通用博弈代理的预测子目标分析

Xinxin Sheng, D. Thuente
{"title":"通用博弈代理的预测子目标分析","authors":"Xinxin Sheng, D. Thuente","doi":"10.1109/WI-IAT.2010.225","DOIUrl":null,"url":null,"abstract":"General Game Playing (GGP) research aims at designing intelligent game playing agents that, given the rules of any game, automatically learn strategies to play and win without human intervention. Our GGP agent can play the wide variety of heterogeneous games provided by the IJCAI GGP competition framework, and without human intervention, learn from its own history to develop strategies toward achieving the game goals. It uses statistical analysis to identify important game features shared by the winners. To illustrate how the correct features are identified, we use game examples from different game categories, including Tic-Tac-Toe (territory taking game), Mini-Chess (strategy game), and Connect Four (board game on larger scale).","PeriodicalId":340211,"journal":{"name":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Predictive Sub-goal Analysis in a General Game Playing Agent\",\"authors\":\"Xinxin Sheng, D. Thuente\",\"doi\":\"10.1109/WI-IAT.2010.225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"General Game Playing (GGP) research aims at designing intelligent game playing agents that, given the rules of any game, automatically learn strategies to play and win without human intervention. Our GGP agent can play the wide variety of heterogeneous games provided by the IJCAI GGP competition framework, and without human intervention, learn from its own history to develop strategies toward achieving the game goals. It uses statistical analysis to identify important game features shared by the winners. To illustrate how the correct features are identified, we use game examples from different game categories, including Tic-Tac-Toe (territory taking game), Mini-Chess (strategy game), and Connect Four (board game on larger scale).\",\"PeriodicalId\":340211,\"journal\":{\"name\":\"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2010.225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2010.225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

通用游戏(GGP)研究旨在设计智能游戏代理,在给定任何游戏规则的情况下,自动学习游戏策略并在没有人为干预的情况下获胜。我们的GGP智能体可以玩IJCAI GGP竞争框架提供的各种各样的异构游戏,并且在没有人为干预的情况下,从自己的历史中学习来制定实现游戏目标的策略。它使用统计分析来识别赢家共有的重要游戏特征。为了说明如何识别正确的功能,我们使用了来自不同游戏类别的游戏示例,包括Tic-Tac-Toe(领土占领游戏),Mini-Chess(战略游戏)和Connect Four(更大规模的棋盘游戏)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predictive Sub-goal Analysis in a General Game Playing Agent
General Game Playing (GGP) research aims at designing intelligent game playing agents that, given the rules of any game, automatically learn strategies to play and win without human intervention. Our GGP agent can play the wide variety of heterogeneous games provided by the IJCAI GGP competition framework, and without human intervention, learn from its own history to develop strategies toward achieving the game goals. It uses statistical analysis to identify important game features shared by the winners. To illustrate how the correct features are identified, we use game examples from different game categories, including Tic-Tac-Toe (territory taking game), Mini-Chess (strategy game), and Connect Four (board game on larger scale).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Game Theory for Security: Lessons Learned from Deployed Applications A Decision Rule Method for Assessing the Completeness and Consistency of a Data Warehouse Semantic Structure Content for Dynamic Web Pages Enhancing the Performance of Metadata Service for Cloud Computing Improving Diversity of Focused Summaries through the Negative Endorsements of Redundant Facts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1