脑电信号中伽马响应的检测

D.I. Tufekci, S. Karakas, O. Arikan
{"title":"脑电信号中伽马响应的检测","authors":"D.I. Tufekci, S. Karakas, O. Arikan","doi":"10.1109/SIU.2006.1659834","DOIUrl":null,"url":null,"abstract":"In the detection of the existence of the early gamma response, subjective methods have been used. In this study, an automated gamma detection technique is developed based on the features obtained from the time-frequency representation of the EEG signal in the gamma frequency band. The technique easily discriminates the gamma response existing and non-existing cases for the generated synthetic data. The classification of the technique and that of the expert opinion coincide %77 for real EEG data","PeriodicalId":415037,"journal":{"name":"2006 IEEE 14th Signal Processing and Communications Applications","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Gamma Responses in EEG Signals\",\"authors\":\"D.I. Tufekci, S. Karakas, O. Arikan\",\"doi\":\"10.1109/SIU.2006.1659834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the detection of the existence of the early gamma response, subjective methods have been used. In this study, an automated gamma detection technique is developed based on the features obtained from the time-frequency representation of the EEG signal in the gamma frequency band. The technique easily discriminates the gamma response existing and non-existing cases for the generated synthetic data. The classification of the technique and that of the expert opinion coincide %77 for real EEG data\",\"PeriodicalId\":415037,\"journal\":{\"name\":\"2006 IEEE 14th Signal Processing and Communications Applications\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE 14th Signal Processing and Communications Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2006.1659834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE 14th Signal Processing and Communications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2006.1659834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在检测早期伽玛反应的存在,主观的方法已被使用。在本研究中,基于脑电信号在伽马频段的时频表征所获得的特征,开发了一种自动伽马检测技术。该技术很容易区分生成的合成数据的伽马响应存在和不存在的情况。该方法的分类与专家意见的分类在实际脑电图数据上的符合率为77%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of Gamma Responses in EEG Signals
In the detection of the existence of the early gamma response, subjective methods have been used. In this study, an automated gamma detection technique is developed based on the features obtained from the time-frequency representation of the EEG signal in the gamma frequency band. The technique easily discriminates the gamma response existing and non-existing cases for the generated synthetic data. The classification of the technique and that of the expert opinion coincide %77 for real EEG data
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Peer-to-Peer Multipoint Video Conferencing Using Layered Video Determination of Product Surface Quality Watermarking Tools for Turkish Texts By Using Darlington Topology Improvement of In-Band Gain for the Log Domain Filters Dual Wideband Antenna Analysis for Linear FMCW Radar Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1