K. Lee, Nishant Sankaran, D. Mohan, Kenny Davila, Dennis Fedorishin, S. Setlur, V. Govindaraju
{"title":"长期人物再识别的贝叶斯个性化衣橱模型(BP-WM)","authors":"K. Lee, Nishant Sankaran, D. Mohan, Kenny Davila, Dennis Fedorishin, S. Setlur, V. Govindaraju","doi":"10.1109/AVSS52988.2021.9663830","DOIUrl":null,"url":null,"abstract":"Long-term surveillance applications often involve having to re-identify individuals over several days. The task is made even more challenging due to changes in appearance features such as clothing over a longitudinal time-span of days or longer. In this paper, we propose a novel approach called Bayesian Personalized-Wardrobe Model (BPWM) for long-term person re-identification (re-ID) by employing a Bayesian Personalized Ranking (BPR) for clothing features extracted from video sequences. In contrast to previous long-term person re-ID works, we exploit the fact that people typically choose their attire based on their personal preferences and that knowing a person’s chosen wardrobe can be used as a soft-biometric to distinguish identities in the long-term. We evaluate the performance of our proposed BP-WM on the extended Indoor Long-term Re-identification Wardrobe (ILRW) dataset. Experimental results show that our method achieves state-of-the-art performance and that BP-WM can be used as a reliable soft-biometric for person re-identification.","PeriodicalId":246327,"journal":{"name":"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bayesian Personalized-Wardrobe Model (BP-WM) for Long-Term Person Re-Identification\",\"authors\":\"K. Lee, Nishant Sankaran, D. Mohan, Kenny Davila, Dennis Fedorishin, S. Setlur, V. Govindaraju\",\"doi\":\"10.1109/AVSS52988.2021.9663830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Long-term surveillance applications often involve having to re-identify individuals over several days. The task is made even more challenging due to changes in appearance features such as clothing over a longitudinal time-span of days or longer. In this paper, we propose a novel approach called Bayesian Personalized-Wardrobe Model (BPWM) for long-term person re-identification (re-ID) by employing a Bayesian Personalized Ranking (BPR) for clothing features extracted from video sequences. In contrast to previous long-term person re-ID works, we exploit the fact that people typically choose their attire based on their personal preferences and that knowing a person’s chosen wardrobe can be used as a soft-biometric to distinguish identities in the long-term. We evaluate the performance of our proposed BP-WM on the extended Indoor Long-term Re-identification Wardrobe (ILRW) dataset. Experimental results show that our method achieves state-of-the-art performance and that BP-WM can be used as a reliable soft-biometric for person re-identification.\",\"PeriodicalId\":246327,\"journal\":{\"name\":\"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS52988.2021.9663830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS52988.2021.9663830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bayesian Personalized-Wardrobe Model (BP-WM) for Long-Term Person Re-Identification
Long-term surveillance applications often involve having to re-identify individuals over several days. The task is made even more challenging due to changes in appearance features such as clothing over a longitudinal time-span of days or longer. In this paper, we propose a novel approach called Bayesian Personalized-Wardrobe Model (BPWM) for long-term person re-identification (re-ID) by employing a Bayesian Personalized Ranking (BPR) for clothing features extracted from video sequences. In contrast to previous long-term person re-ID works, we exploit the fact that people typically choose their attire based on their personal preferences and that knowing a person’s chosen wardrobe can be used as a soft-biometric to distinguish identities in the long-term. We evaluate the performance of our proposed BP-WM on the extended Indoor Long-term Re-identification Wardrobe (ILRW) dataset. Experimental results show that our method achieves state-of-the-art performance and that BP-WM can be used as a reliable soft-biometric for person re-identification.