亚洲国家交通嵌入式系统的低功耗语义分割

Jun-Long Wang
{"title":"亚洲国家交通嵌入式系统的低功耗语义分割","authors":"Jun-Long Wang","doi":"10.1109/ICMEW56448.2022.9859408","DOIUrl":null,"url":null,"abstract":"In the real-world road scene, it needs a quick and powerful system to detect any traffic situation and compute prediction results in a limited hardware environment. In this paper, we present a semantic segmentation model that can perform well in the complex and dynamic Asian road scenes and evaluate the accuracy, power, and speed of MediaTek Dimensity 9000 platform. We use a model called Deep Dual-resolution Networks (DDRNets) in PyTorch, and deploy TensorFlow Lite format in MediaTek chip to assess our model. We choose the two-stage training strategy and utilize the decreasing training resolution technique to further improve results. Our team is the first-place winner in Low-power Deep Learning Semantic Segmentation Model Compression Competition for Traffic Scene in Asian Countries at IEEE International Conference on Multimedia & Expo (ICME) 2022.","PeriodicalId":106759,"journal":{"name":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Power Semantic Segmentation on Embedded Systems for Traffic in Asian Countries\",\"authors\":\"Jun-Long Wang\",\"doi\":\"10.1109/ICMEW56448.2022.9859408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the real-world road scene, it needs a quick and powerful system to detect any traffic situation and compute prediction results in a limited hardware environment. In this paper, we present a semantic segmentation model that can perform well in the complex and dynamic Asian road scenes and evaluate the accuracy, power, and speed of MediaTek Dimensity 9000 platform. We use a model called Deep Dual-resolution Networks (DDRNets) in PyTorch, and deploy TensorFlow Lite format in MediaTek chip to assess our model. We choose the two-stage training strategy and utilize the decreasing training resolution technique to further improve results. Our team is the first-place winner in Low-power Deep Learning Semantic Segmentation Model Compression Competition for Traffic Scene in Asian Countries at IEEE International Conference on Multimedia & Expo (ICME) 2022.\",\"PeriodicalId\":106759,\"journal\":{\"name\":\"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEW56448.2022.9859408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW56448.2022.9859408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在现实道路场景中,在有限的硬件环境下,需要一个快速而强大的系统来检测任何交通状况并计算预测结果。本文提出了一个能够在复杂动态的亚洲道路场景中表现良好的语义分割模型,并对联发科Dimensity 9000平台的准确率、功率和速度进行了评估。我们在PyTorch中使用深度双分辨率网络(Deep Dual-resolution Networks, DDRNets)模型,并在联发科芯片中部署TensorFlow Lite格式来评估我们的模型。我们选择了两阶段训练策略,并利用递减训练分辨率技术来进一步提高结果。我们的团队在IEEE国际多媒体与博览会(ICME) 2022年亚洲国家交通场景低功耗深度学习语义分割模型压缩竞赛中获得第一名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-Power Semantic Segmentation on Embedded Systems for Traffic in Asian Countries
In the real-world road scene, it needs a quick and powerful system to detect any traffic situation and compute prediction results in a limited hardware environment. In this paper, we present a semantic segmentation model that can perform well in the complex and dynamic Asian road scenes and evaluate the accuracy, power, and speed of MediaTek Dimensity 9000 platform. We use a model called Deep Dual-resolution Networks (DDRNets) in PyTorch, and deploy TensorFlow Lite format in MediaTek chip to assess our model. We choose the two-stage training strategy and utilize the decreasing training resolution technique to further improve results. Our team is the first-place winner in Low-power Deep Learning Semantic Segmentation Model Compression Competition for Traffic Scene in Asian Countries at IEEE International Conference on Multimedia & Expo (ICME) 2022.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Quality Evaluation for Generated Music Based on Emotion Recognition Model Bottleneck Detection in Crowded Video Scenes Utilizing Lagrangian Motion Analysis Via Density and Arc Length Measures Efficient Topology Coding and Payload Partitioning Techniques for Neural Network Compression (NNC) Standard Exploring Multisensory Feedback for Virtual Reality Relaxation A Unified Video Summarization for Video Anomalies Through Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1