脑电解释中机器学习算法的效率比较

Xia Han, F. Amiel, Xun Zhang, Kunni Wei, Cong Yan, Wenjun Hu, Zefeng Wang
{"title":"脑电解释中机器学习算法的效率比较","authors":"Xia Han, F. Amiel, Xun Zhang, Kunni Wei, Cong Yan, Wenjun Hu, Zefeng Wang","doi":"10.1109/AICAS57966.2023.10168626","DOIUrl":null,"url":null,"abstract":"This paper intends to use a small protocol to detect stroke disease on a patient by using signals provided by only three EEG probes. To achieve this objective, we compare the performances in terms of accuracy and time of six machine learning (ML) algorithms (Random Forest, Logistic Regression, Support Vector Machine, K-Nearest Neighbor, Decision Tree and CatBoost) during a process of EEG-based classification pathology. We use a database of EEG recording signals collected by three electrodes, established by Beijing University of Chinese Medicine and carried out on subjects healthy or affected by strokes when they are exposed to the vision of planes of five different colors. The subjects are known to be healthy or affected by strokes. The records are used to train each algorithm for 70% of the population, and the performances are estimated on the remaining 30%. Then the process is repeated one hundred times when changing the set used for training and the set used to test. We then consider a statistic on the results obtained using each method for comparison. Our results show that the SVM algorithm is the most efficient in terms of the accuracy of the results, and can detect stoke disease with a reliability of 70%.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficiency Comparison of Machine Learning Algorithms for EEG Interpretation\",\"authors\":\"Xia Han, F. Amiel, Xun Zhang, Kunni Wei, Cong Yan, Wenjun Hu, Zefeng Wang\",\"doi\":\"10.1109/AICAS57966.2023.10168626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper intends to use a small protocol to detect stroke disease on a patient by using signals provided by only three EEG probes. To achieve this objective, we compare the performances in terms of accuracy and time of six machine learning (ML) algorithms (Random Forest, Logistic Regression, Support Vector Machine, K-Nearest Neighbor, Decision Tree and CatBoost) during a process of EEG-based classification pathology. We use a database of EEG recording signals collected by three electrodes, established by Beijing University of Chinese Medicine and carried out on subjects healthy or affected by strokes when they are exposed to the vision of planes of five different colors. The subjects are known to be healthy or affected by strokes. The records are used to train each algorithm for 70% of the population, and the performances are estimated on the remaining 30%. Then the process is repeated one hundred times when changing the set used for training and the set used to test. We then consider a statistic on the results obtained using each method for comparison. Our results show that the SVM algorithm is the most efficient in terms of the accuracy of the results, and can detect stoke disease with a reliability of 70%.\",\"PeriodicalId\":296649,\"journal\":{\"name\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"172 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS57966.2023.10168626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文拟采用一种小型方案,通过仅使用三个脑电图探头提供的信号来检测患者的中风疾病。为了实现这一目标,我们比较了六种机器学习(ML)算法(随机森林、逻辑回归、支持向量机、k近邻、决策树和CatBoost)在基于脑电图的分类病理过程中的准确性和时间性能。我们使用了北京中医药大学建立的三个电极收集的脑电图记录信号数据库,并对健康或中风患者在接触五种不同颜色平面的视觉时进行了测试。这些研究对象要么健康,要么患有中风。这些记录用于训练70%的人口的每种算法,并在剩余的30%上估计性能。然后,在改变用于训练的集合和用于测试的集合时,重复该过程100次。然后,我们考虑对使用每种方法获得的结果进行统计比较。我们的研究结果表明,SVM算法在结果的准确性方面是最有效的,可以以70%的可靠性检测出斯托克病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficiency Comparison of Machine Learning Algorithms for EEG Interpretation
This paper intends to use a small protocol to detect stroke disease on a patient by using signals provided by only three EEG probes. To achieve this objective, we compare the performances in terms of accuracy and time of six machine learning (ML) algorithms (Random Forest, Logistic Regression, Support Vector Machine, K-Nearest Neighbor, Decision Tree and CatBoost) during a process of EEG-based classification pathology. We use a database of EEG recording signals collected by three electrodes, established by Beijing University of Chinese Medicine and carried out on subjects healthy or affected by strokes when they are exposed to the vision of planes of five different colors. The subjects are known to be healthy or affected by strokes. The records are used to train each algorithm for 70% of the population, and the performances are estimated on the remaining 30%. Then the process is repeated one hundred times when changing the set used for training and the set used to test. We then consider a statistic on the results obtained using each method for comparison. Our results show that the SVM algorithm is the most efficient in terms of the accuracy of the results, and can detect stoke disease with a reliability of 70%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synaptic metaplasticity with multi-level memristive devices Unsupervised Learning of Spike-Timing-Dependent Plasticity Based on a Neuromorphic Implementation A Fully Differential 4-Bit Analog Compute-In-Memory Architecture for Inference Application Convergent Waveform Relaxation Schemes for the Transient Analysis of Associative ReLU Arrays Performance Assessment of an Extremely Energy-Efficient Binary Neural Network Using Adiabatic Superconductor Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1