社交媒体数据在时尚预测中的价值

Youran Fu, M. Fisher
{"title":"社交媒体数据在时尚预测中的价值","authors":"Youran Fu, M. Fisher","doi":"10.1287/msom.2023.1193","DOIUrl":null,"url":null,"abstract":"Problem definition: How to use social media to predict style color and jeans fit sales for a retailer. Academic/practical relevance: Neither retail practice nor the academic literature provides a method for using social media to predict style color and jeans fit sales for a retailer. We present and validate a systematic approach for doing that. Methodology: Demand forecasting in the fashion industry is challenging due to short product lifetimes, long manufacturing lead times, and constant innovation of fashion products. We investigate the value of social media information for color trends and jeans fit forecasting. We partner with three multinational retailers, two apparel and one footwear, and combine their proprietary data sets with web-crawled publicly available data on Twitter and the Google Search Volume Index. We implement a variety of machine learning models to develop forecasts that can be used in setting the initial shipment quantity for an item, arguably the most important decision for fashion retailers. Results: Our findings show that fine-grained social media information has significant predictive power in forecasting color and fit demands months in advance of the sales season, and therefore greatly helps in making the initial shipment quantity decision. The predictive power of including social media features, measured by the improvement of the out-of-sample mean absolute deviation over current practice ranges from 24% to 57%. Managerial implications: To our knowledge, this study is the first to explore and demonstrate the value of social media information in fashion demand forecasting in a way that is practical and operable for fashion retailers. With consistent results across all three retailers, we demonstrate the robustness of our findings over market and geographic heterogeneity, and different forecast horizons. Moreover, we discuss potential mechanisms that might be driving this significant predictive power. Our results suggest that changes in fashion demand are driven more by “bottom-up” changes in consumer preferences than by “top-down” influence from the fashion industry. Funding: This work was supported by Wharton School Fishman-Davidson Center for Service and Operations Management, the Wharton School Baker Retailing Center, and the Wharton School Risk Management Center Russell Ackoff Doctoral Student Fellowship. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.1193 .","PeriodicalId":119284,"journal":{"name":"Manufacturing & Service Operations Management","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Value of Social Media Data in Fashion Forecasting\",\"authors\":\"Youran Fu, M. Fisher\",\"doi\":\"10.1287/msom.2023.1193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Problem definition: How to use social media to predict style color and jeans fit sales for a retailer. Academic/practical relevance: Neither retail practice nor the academic literature provides a method for using social media to predict style color and jeans fit sales for a retailer. We present and validate a systematic approach for doing that. Methodology: Demand forecasting in the fashion industry is challenging due to short product lifetimes, long manufacturing lead times, and constant innovation of fashion products. We investigate the value of social media information for color trends and jeans fit forecasting. We partner with three multinational retailers, two apparel and one footwear, and combine their proprietary data sets with web-crawled publicly available data on Twitter and the Google Search Volume Index. We implement a variety of machine learning models to develop forecasts that can be used in setting the initial shipment quantity for an item, arguably the most important decision for fashion retailers. Results: Our findings show that fine-grained social media information has significant predictive power in forecasting color and fit demands months in advance of the sales season, and therefore greatly helps in making the initial shipment quantity decision. The predictive power of including social media features, measured by the improvement of the out-of-sample mean absolute deviation over current practice ranges from 24% to 57%. Managerial implications: To our knowledge, this study is the first to explore and demonstrate the value of social media information in fashion demand forecasting in a way that is practical and operable for fashion retailers. With consistent results across all three retailers, we demonstrate the robustness of our findings over market and geographic heterogeneity, and different forecast horizons. Moreover, we discuss potential mechanisms that might be driving this significant predictive power. Our results suggest that changes in fashion demand are driven more by “bottom-up” changes in consumer preferences than by “top-down” influence from the fashion industry. Funding: This work was supported by Wharton School Fishman-Davidson Center for Service and Operations Management, the Wharton School Baker Retailing Center, and the Wharton School Risk Management Center Russell Ackoff Doctoral Student Fellowship. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.1193 .\",\"PeriodicalId\":119284,\"journal\":{\"name\":\"Manufacturing & Service Operations Management\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing & Service Operations Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/msom.2023.1193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing & Service Operations Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/msom.2023.1193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

问题定义:如何使用社交媒体来预测零售商的款式、颜色和牛仔裤的销量。学术/实践相关性:无论是零售实践还是学术文献都没有提供一种方法来使用社交媒体来预测零售商的款式、颜色和牛仔裤的销量。我们提出并验证了这样做的系统方法。方法:由于产品寿命短,制造交货期长,以及时尚产品的不断创新,时尚行业的需求预测具有挑战性。我们调查了社交媒体信息对颜色趋势和牛仔裤合身度预测的价值。我们与三家跨国零售商(两家服装零售商和一家鞋类零售商)合作,并将它们的专有数据集与Twitter和谷歌搜索量指数(Google Search Volume Index)上的网络抓取公开数据结合起来。我们实现了各种机器学习模型来开发预测,可用于设置商品的初始出货量,这可以说是时尚零售商最重要的决策。结果:我们的研究结果表明,细粒度的社交媒体信息在销售季节前几个月预测颜色和合身需求方面具有显着的预测能力,因此对初步出货数量决策有很大帮助。包括社交媒体特征的预测能力,通过改善样本外平均绝对偏差来衡量,目前的实践范围在24%到57%之间。管理启示:据我们所知,这项研究首次探索并证明了社交媒体信息在时尚需求预测中的价值,这对时尚零售商来说是一种实用和可操作的方式。在所有三家零售商的一致结果中,我们证明了我们的发现在市场和地理异质性以及不同预测范围内的稳健性。此外,我们还讨论了可能推动这种重要预测能力的潜在机制。我们的研究结果表明,时尚需求的变化更多地是由消费者偏好的“自下而上”变化所驱动,而不是由时尚产业的“自上而下”影响所驱动。资助:本研究得到了沃顿商学院Fishman-Davidson服务与运营管理中心、沃顿商学院贝克零售中心和沃顿商学院风险管理中心罗素·阿科夫博士生奖学金的支持。补充材料:在线附录可在https://doi.org/10.1287/msom.2023.1193上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Value of Social Media Data in Fashion Forecasting
Problem definition: How to use social media to predict style color and jeans fit sales for a retailer. Academic/practical relevance: Neither retail practice nor the academic literature provides a method for using social media to predict style color and jeans fit sales for a retailer. We present and validate a systematic approach for doing that. Methodology: Demand forecasting in the fashion industry is challenging due to short product lifetimes, long manufacturing lead times, and constant innovation of fashion products. We investigate the value of social media information for color trends and jeans fit forecasting. We partner with three multinational retailers, two apparel and one footwear, and combine their proprietary data sets with web-crawled publicly available data on Twitter and the Google Search Volume Index. We implement a variety of machine learning models to develop forecasts that can be used in setting the initial shipment quantity for an item, arguably the most important decision for fashion retailers. Results: Our findings show that fine-grained social media information has significant predictive power in forecasting color and fit demands months in advance of the sales season, and therefore greatly helps in making the initial shipment quantity decision. The predictive power of including social media features, measured by the improvement of the out-of-sample mean absolute deviation over current practice ranges from 24% to 57%. Managerial implications: To our knowledge, this study is the first to explore and demonstrate the value of social media information in fashion demand forecasting in a way that is practical and operable for fashion retailers. With consistent results across all three retailers, we demonstrate the robustness of our findings over market and geographic heterogeneity, and different forecast horizons. Moreover, we discuss potential mechanisms that might be driving this significant predictive power. Our results suggest that changes in fashion demand are driven more by “bottom-up” changes in consumer preferences than by “top-down” influence from the fashion industry. Funding: This work was supported by Wharton School Fishman-Davidson Center for Service and Operations Management, the Wharton School Baker Retailing Center, and the Wharton School Risk Management Center Russell Ackoff Doctoral Student Fellowship. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.1193 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Physician Adoption of AI Assistant Disclosing Delivery Performance Information When Consumers Are Sensitive to Promised Delivery Time, Delivery Reliability, and Price Loyalty Currency and Mental Accounting: Do Consumers Treat Points Like Money? Dealership or Marketplace with Fulfillment Services: A Dynamic Comparison Introduction: Frontiers in Operations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1