{"title":"一种基于小波分析和神经网络的无监督检测方法","authors":"G. Sciortino, D. Tegolo, Cesare Valenti","doi":"10.1109/ICAT.2017.8171631","DOIUrl":null,"url":null,"abstract":"Ultrasound imaging is a well known noninvasive way to evaluate various diseases during the prenatal age. In particular, the thickness measure of the nuchal transucency is strictly correlated with pathologies like trisomy 13, 18 and 21. For a correct investigation, the methodology needs mid-sagittal sections and the proposed approach is based on wavelet analysis and neural network classifiers to locate components useful to identify mid-sagittal planes. To evaluate the performance and the robustness of the methodology, real clinical ultrasound images were considered, obtaining an average error of at most 0.3 millimeters in 97.4% of the cases.","PeriodicalId":112404,"journal":{"name":"2017 XXVI International Conference on Information, Communication and Automation Technologies (ICAT)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A non-supervised approach to locate and to measure the nuchal translucency by means of wavelet analysis and neural networks\",\"authors\":\"G. Sciortino, D. Tegolo, Cesare Valenti\",\"doi\":\"10.1109/ICAT.2017.8171631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrasound imaging is a well known noninvasive way to evaluate various diseases during the prenatal age. In particular, the thickness measure of the nuchal transucency is strictly correlated with pathologies like trisomy 13, 18 and 21. For a correct investigation, the methodology needs mid-sagittal sections and the proposed approach is based on wavelet analysis and neural network classifiers to locate components useful to identify mid-sagittal planes. To evaluate the performance and the robustness of the methodology, real clinical ultrasound images were considered, obtaining an average error of at most 0.3 millimeters in 97.4% of the cases.\",\"PeriodicalId\":112404,\"journal\":{\"name\":\"2017 XXVI International Conference on Information, Communication and Automation Technologies (ICAT)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 XXVI International Conference on Information, Communication and Automation Technologies (ICAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAT.2017.8171631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 XXVI International Conference on Information, Communication and Automation Technologies (ICAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAT.2017.8171631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A non-supervised approach to locate and to measure the nuchal translucency by means of wavelet analysis and neural networks
Ultrasound imaging is a well known noninvasive way to evaluate various diseases during the prenatal age. In particular, the thickness measure of the nuchal transucency is strictly correlated with pathologies like trisomy 13, 18 and 21. For a correct investigation, the methodology needs mid-sagittal sections and the proposed approach is based on wavelet analysis and neural network classifiers to locate components useful to identify mid-sagittal planes. To evaluate the performance and the robustness of the methodology, real clinical ultrasound images were considered, obtaining an average error of at most 0.3 millimeters in 97.4% of the cases.