N. Peserico, Russell L. T. Schwartz, Hangbo Yang, Xiaoxuan Ma, M. Hosseini, Puneet Gupta, H. Dalir, V. Sorger
{"title":"基于fft的卷积神经网络在硅光子平台上的应用","authors":"N. Peserico, Russell L. T. Schwartz, Hangbo Yang, Xiaoxuan Ma, M. Hosseini, Puneet Gupta, H. Dalir, V. Sorger","doi":"10.1109/IPC53466.2022.9975735","DOIUrl":null,"url":null,"abstract":"We present our implementation of an on-chip FFT-based optical Convolution Neural Network. By exploiting the integration capabilities of Silicon Photonics, we can integrate high-speed optical FFT into a single Photonic Integrated Circuit (PIC), showing design, packaging, and initial results.","PeriodicalId":202839,"journal":{"name":"2022 IEEE Photonics Conference (IPC)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FFT-based Convolution Neural Network on Silicon Photonics Platform\",\"authors\":\"N. Peserico, Russell L. T. Schwartz, Hangbo Yang, Xiaoxuan Ma, M. Hosseini, Puneet Gupta, H. Dalir, V. Sorger\",\"doi\":\"10.1109/IPC53466.2022.9975735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present our implementation of an on-chip FFT-based optical Convolution Neural Network. By exploiting the integration capabilities of Silicon Photonics, we can integrate high-speed optical FFT into a single Photonic Integrated Circuit (PIC), showing design, packaging, and initial results.\",\"PeriodicalId\":202839,\"journal\":{\"name\":\"2022 IEEE Photonics Conference (IPC)\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Photonics Conference (IPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPC53466.2022.9975735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Photonics Conference (IPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPC53466.2022.9975735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FFT-based Convolution Neural Network on Silicon Photonics Platform
We present our implementation of an on-chip FFT-based optical Convolution Neural Network. By exploiting the integration capabilities of Silicon Photonics, we can integrate high-speed optical FFT into a single Photonic Integrated Circuit (PIC), showing design, packaging, and initial results.