{"title":"认知无线网络中频谱租赁中继节点选择","authors":"Aqeel Raza Syed, K. Yau","doi":"10.1109/ICCSCE.2013.6719937","DOIUrl":null,"url":null,"abstract":"In spectrum leasing, licensed users (or primary users, PUs) and unlicensed users (or secondary users, SUs) interact with each other to achieve mutual agreement on channel access in order to increase their respective network performance. The PUs must select suitable SUs as relay nodes which are expected to uphold the leasing agreement. General speaking, the SU's transmission power must fulfill the minimum and maximum power threshold levels imposed by PUs. The minimum power thresholds ensure that a satisfactory level of successful transmission can be achieved by SUs while helping to relay PUs' packets. On the other hand, the maximum power threshold ensures that SUs' interference to PUs is acceptable to PUs. In this paper, the PUs announce their requirements on minimum and maximum power threshold levels to SUs for the selection of relay nodes; while the SUs maintain their respective transmission power within the threshold level defined by PUs in order to increase their respective network performance (e.g. throughput and end-to-end delay performances). The functionalities are modeled and solved using Reinforcement Learning (RL), which determines the suitable SUs as relay nodes on the basis of the aforementioned power threshold criterion. Our preliminary simulation results show that the number of SUs that qualify as relay nodes increases with the maximum power level imposed by PU, and thus it is expected to provide PUs' and SUs' performance enhancement (e.g. throughput). It also shows that, the convergence rate of SUs' power level increases with the number of simulation iterations.","PeriodicalId":319285,"journal":{"name":"2013 IEEE International Conference on Control System, Computing and Engineering","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Relay node selection for spectrum leasing in cognitive radio networks\",\"authors\":\"Aqeel Raza Syed, K. Yau\",\"doi\":\"10.1109/ICCSCE.2013.6719937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In spectrum leasing, licensed users (or primary users, PUs) and unlicensed users (or secondary users, SUs) interact with each other to achieve mutual agreement on channel access in order to increase their respective network performance. The PUs must select suitable SUs as relay nodes which are expected to uphold the leasing agreement. General speaking, the SU's transmission power must fulfill the minimum and maximum power threshold levels imposed by PUs. The minimum power thresholds ensure that a satisfactory level of successful transmission can be achieved by SUs while helping to relay PUs' packets. On the other hand, the maximum power threshold ensures that SUs' interference to PUs is acceptable to PUs. In this paper, the PUs announce their requirements on minimum and maximum power threshold levels to SUs for the selection of relay nodes; while the SUs maintain their respective transmission power within the threshold level defined by PUs in order to increase their respective network performance (e.g. throughput and end-to-end delay performances). The functionalities are modeled and solved using Reinforcement Learning (RL), which determines the suitable SUs as relay nodes on the basis of the aforementioned power threshold criterion. Our preliminary simulation results show that the number of SUs that qualify as relay nodes increases with the maximum power level imposed by PU, and thus it is expected to provide PUs' and SUs' performance enhancement (e.g. throughput). It also shows that, the convergence rate of SUs' power level increases with the number of simulation iterations.\",\"PeriodicalId\":319285,\"journal\":{\"name\":\"2013 IEEE International Conference on Control System, Computing and Engineering\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Control System, Computing and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSCE.2013.6719937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Control System, Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE.2013.6719937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Relay node selection for spectrum leasing in cognitive radio networks
In spectrum leasing, licensed users (or primary users, PUs) and unlicensed users (or secondary users, SUs) interact with each other to achieve mutual agreement on channel access in order to increase their respective network performance. The PUs must select suitable SUs as relay nodes which are expected to uphold the leasing agreement. General speaking, the SU's transmission power must fulfill the minimum and maximum power threshold levels imposed by PUs. The minimum power thresholds ensure that a satisfactory level of successful transmission can be achieved by SUs while helping to relay PUs' packets. On the other hand, the maximum power threshold ensures that SUs' interference to PUs is acceptable to PUs. In this paper, the PUs announce their requirements on minimum and maximum power threshold levels to SUs for the selection of relay nodes; while the SUs maintain their respective transmission power within the threshold level defined by PUs in order to increase their respective network performance (e.g. throughput and end-to-end delay performances). The functionalities are modeled and solved using Reinforcement Learning (RL), which determines the suitable SUs as relay nodes on the basis of the aforementioned power threshold criterion. Our preliminary simulation results show that the number of SUs that qualify as relay nodes increases with the maximum power level imposed by PU, and thus it is expected to provide PUs' and SUs' performance enhancement (e.g. throughput). It also shows that, the convergence rate of SUs' power level increases with the number of simulation iterations.