认知无线网络中频谱租赁中继节点选择

Aqeel Raza Syed, K. Yau
{"title":"认知无线网络中频谱租赁中继节点选择","authors":"Aqeel Raza Syed, K. Yau","doi":"10.1109/ICCSCE.2013.6719937","DOIUrl":null,"url":null,"abstract":"In spectrum leasing, licensed users (or primary users, PUs) and unlicensed users (or secondary users, SUs) interact with each other to achieve mutual agreement on channel access in order to increase their respective network performance. The PUs must select suitable SUs as relay nodes which are expected to uphold the leasing agreement. General speaking, the SU's transmission power must fulfill the minimum and maximum power threshold levels imposed by PUs. The minimum power thresholds ensure that a satisfactory level of successful transmission can be achieved by SUs while helping to relay PUs' packets. On the other hand, the maximum power threshold ensures that SUs' interference to PUs is acceptable to PUs. In this paper, the PUs announce their requirements on minimum and maximum power threshold levels to SUs for the selection of relay nodes; while the SUs maintain their respective transmission power within the threshold level defined by PUs in order to increase their respective network performance (e.g. throughput and end-to-end delay performances). The functionalities are modeled and solved using Reinforcement Learning (RL), which determines the suitable SUs as relay nodes on the basis of the aforementioned power threshold criterion. Our preliminary simulation results show that the number of SUs that qualify as relay nodes increases with the maximum power level imposed by PU, and thus it is expected to provide PUs' and SUs' performance enhancement (e.g. throughput). It also shows that, the convergence rate of SUs' power level increases with the number of simulation iterations.","PeriodicalId":319285,"journal":{"name":"2013 IEEE International Conference on Control System, Computing and Engineering","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Relay node selection for spectrum leasing in cognitive radio networks\",\"authors\":\"Aqeel Raza Syed, K. Yau\",\"doi\":\"10.1109/ICCSCE.2013.6719937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In spectrum leasing, licensed users (or primary users, PUs) and unlicensed users (or secondary users, SUs) interact with each other to achieve mutual agreement on channel access in order to increase their respective network performance. The PUs must select suitable SUs as relay nodes which are expected to uphold the leasing agreement. General speaking, the SU's transmission power must fulfill the minimum and maximum power threshold levels imposed by PUs. The minimum power thresholds ensure that a satisfactory level of successful transmission can be achieved by SUs while helping to relay PUs' packets. On the other hand, the maximum power threshold ensures that SUs' interference to PUs is acceptable to PUs. In this paper, the PUs announce their requirements on minimum and maximum power threshold levels to SUs for the selection of relay nodes; while the SUs maintain their respective transmission power within the threshold level defined by PUs in order to increase their respective network performance (e.g. throughput and end-to-end delay performances). The functionalities are modeled and solved using Reinforcement Learning (RL), which determines the suitable SUs as relay nodes on the basis of the aforementioned power threshold criterion. Our preliminary simulation results show that the number of SUs that qualify as relay nodes increases with the maximum power level imposed by PU, and thus it is expected to provide PUs' and SUs' performance enhancement (e.g. throughput). It also shows that, the convergence rate of SUs' power level increases with the number of simulation iterations.\",\"PeriodicalId\":319285,\"journal\":{\"name\":\"2013 IEEE International Conference on Control System, Computing and Engineering\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Control System, Computing and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSCE.2013.6719937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Control System, Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE.2013.6719937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在频谱租赁中,授权用户(或主用户,pu)和未授权用户(或从用户,su)相互作用,达成通道接入协议,以提高各自的网络性能。pu必须选择合适的su作为中继节点,以维护租赁协议。一般来说,SU的发射功率必须满足pu规定的最小和最大功率阈值水平。最小的功率阈值确保在帮助转发pu的数据包的同时,su可以达到令人满意的成功传输水平。另一方面,最大功率阈值可以保证su对pu的干扰在pu可以接受的范围内。在本文中,pu向su公布其对最小和最大功率阈值水平的要求,用于中继节点的选择;而单元则将各自的传输功率保持在由单元定义的阈值水平内,以提高各自的网络性能(例如吞吐量和端到端延迟性能)。这些功能使用强化学习(RL)建模和求解,RL根据上述功率阈值准则确定合适的su作为中继节点。我们的初步模拟结果表明,符合中继节点资格的su数量随着PU施加的最大功率水平而增加,因此有望提供PU和su的性能增强(例如吞吐量)。仿真结果还表明,随着仿真迭代次数的增加,单元功率级的收敛速度也随之增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Relay node selection for spectrum leasing in cognitive radio networks
In spectrum leasing, licensed users (or primary users, PUs) and unlicensed users (or secondary users, SUs) interact with each other to achieve mutual agreement on channel access in order to increase their respective network performance. The PUs must select suitable SUs as relay nodes which are expected to uphold the leasing agreement. General speaking, the SU's transmission power must fulfill the minimum and maximum power threshold levels imposed by PUs. The minimum power thresholds ensure that a satisfactory level of successful transmission can be achieved by SUs while helping to relay PUs' packets. On the other hand, the maximum power threshold ensures that SUs' interference to PUs is acceptable to PUs. In this paper, the PUs announce their requirements on minimum and maximum power threshold levels to SUs for the selection of relay nodes; while the SUs maintain their respective transmission power within the threshold level defined by PUs in order to increase their respective network performance (e.g. throughput and end-to-end delay performances). The functionalities are modeled and solved using Reinforcement Learning (RL), which determines the suitable SUs as relay nodes on the basis of the aforementioned power threshold criterion. Our preliminary simulation results show that the number of SUs that qualify as relay nodes increases with the maximum power level imposed by PU, and thus it is expected to provide PUs' and SUs' performance enhancement (e.g. throughput). It also shows that, the convergence rate of SUs' power level increases with the number of simulation iterations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Digital aerial imagery of unmanned aerial vehicle for various applications Performance study of preliminary mini anechoic chamber fitted with coconut shell coated absorbers A new approach for the design of relay control circuits Design of ultra wideband rectangular microstrip notched patch antenna Delay compensation using PID controller and GA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1