{"title":"结合博弈论的点阵气体模型中的单向行人流","authors":"Qing-Yi Hao, R. Jiang, Maobin Hu, Qing-Song Wu","doi":"10.1109/CSO.2011.291","DOIUrl":null,"url":null,"abstract":"This paper studies unidirectional pedestrian flow in a channel by using a lattice gas model with parallel update rule. Game theory is introduced to deal with the conflict that several pedestrians intend to move to the same site. A pedestrian is either a co operator (C) or defector (D) when he or she wants to move into the same lattice as other pedestrians. Moreover, he or she could change the strategy (C or D) in the next conflict. The fundamental diagram of pedestrian flow in the channel has been investigated in details, and differences from the model with random sequential update rule have been observed. The co operators fraction is shown to exhibit an interesting non-monotonic dependence on pedestrian density. It is interesting to find that change of co operators fraction alters exponentially before the system comes to steady state. How the parameters p and q in the payoff matrix of game influence mean flow and co operators fraction is also investigated.","PeriodicalId":210815,"journal":{"name":"2011 Fourth International Joint Conference on Computational Sciences and Optimization","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Unidirectional Pedestrian Flow in a Lattice Gas Model Coupled with Game Theory\",\"authors\":\"Qing-Yi Hao, R. Jiang, Maobin Hu, Qing-Song Wu\",\"doi\":\"10.1109/CSO.2011.291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies unidirectional pedestrian flow in a channel by using a lattice gas model with parallel update rule. Game theory is introduced to deal with the conflict that several pedestrians intend to move to the same site. A pedestrian is either a co operator (C) or defector (D) when he or she wants to move into the same lattice as other pedestrians. Moreover, he or she could change the strategy (C or D) in the next conflict. The fundamental diagram of pedestrian flow in the channel has been investigated in details, and differences from the model with random sequential update rule have been observed. The co operators fraction is shown to exhibit an interesting non-monotonic dependence on pedestrian density. It is interesting to find that change of co operators fraction alters exponentially before the system comes to steady state. How the parameters p and q in the payoff matrix of game influence mean flow and co operators fraction is also investigated.\",\"PeriodicalId\":210815,\"journal\":{\"name\":\"2011 Fourth International Joint Conference on Computational Sciences and Optimization\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Joint Conference on Computational Sciences and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSO.2011.291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Joint Conference on Computational Sciences and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2011.291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unidirectional Pedestrian Flow in a Lattice Gas Model Coupled with Game Theory
This paper studies unidirectional pedestrian flow in a channel by using a lattice gas model with parallel update rule. Game theory is introduced to deal with the conflict that several pedestrians intend to move to the same site. A pedestrian is either a co operator (C) or defector (D) when he or she wants to move into the same lattice as other pedestrians. Moreover, he or she could change the strategy (C or D) in the next conflict. The fundamental diagram of pedestrian flow in the channel has been investigated in details, and differences from the model with random sequential update rule have been observed. The co operators fraction is shown to exhibit an interesting non-monotonic dependence on pedestrian density. It is interesting to find that change of co operators fraction alters exponentially before the system comes to steady state. How the parameters p and q in the payoff matrix of game influence mean flow and co operators fraction is also investigated.