使用深度学习技术对引力波进行分类

Al Mahmud Al Mamun, Md. Ashik Iqbal
{"title":"使用深度学习技术对引力波进行分类","authors":"Al Mahmud Al Mamun, Md. Ashik Iqbal","doi":"10.15406/mseij.2022.06.00178","DOIUrl":null,"url":null,"abstract":"Gravitational waves are related to the concept of vibration of space-time curvature. When the body of heavy masses lies on the four-dimensional space-time and changes their position with turbulence motion then actually they create a disturbance in the space. The disturbance travels outward from the origin having light velocity is known as gravitational waves. Laser Interferometer Gravitational-Wave Observatory (LIGO) scientific teamwork declared the identification of these waves. In this paper, we review Gravitational waves, Detection of gravitational waves, deep learning for the classification of gravitational waves. We design and develop a deep learning system to classification gravitational waves of the dataset ‘Gravity Spy (Gravitational waves)’ that is made up of the LIGO images. The goals of this research are to gain a piece of reasonable and useful knowledge about Gravitational waves and propose an effective deep learning network system to classify the gravitational waves. The accuracy achieved by our model is 99.34%.","PeriodicalId":435904,"journal":{"name":"Material Science & Engineering International Journal","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classifying the gravitational waves using the deep learning technique\",\"authors\":\"Al Mahmud Al Mamun, Md. Ashik Iqbal\",\"doi\":\"10.15406/mseij.2022.06.00178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gravitational waves are related to the concept of vibration of space-time curvature. When the body of heavy masses lies on the four-dimensional space-time and changes their position with turbulence motion then actually they create a disturbance in the space. The disturbance travels outward from the origin having light velocity is known as gravitational waves. Laser Interferometer Gravitational-Wave Observatory (LIGO) scientific teamwork declared the identification of these waves. In this paper, we review Gravitational waves, Detection of gravitational waves, deep learning for the classification of gravitational waves. We design and develop a deep learning system to classification gravitational waves of the dataset ‘Gravity Spy (Gravitational waves)’ that is made up of the LIGO images. The goals of this research are to gain a piece of reasonable and useful knowledge about Gravitational waves and propose an effective deep learning network system to classify the gravitational waves. The accuracy achieved by our model is 99.34%.\",\"PeriodicalId\":435904,\"journal\":{\"name\":\"Material Science & Engineering International Journal\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Material Science & Engineering International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15406/mseij.2022.06.00178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Science & Engineering International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/mseij.2022.06.00178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

引力波与时空曲率的振动概念有关。当大质量物体位于四维时空上,并随着湍流运动而改变其位置时,实际上会在空间中产生扰动。以光速从原点向外传播的扰动被称为引力波。激光干涉仪引力波天文台(LIGO)的科学团队宣布确认了这些引力波。本文综述了引力波、引力波探测、引力波分类的深度学习。我们设计并开发了一个深度学习系统,用于对由LIGO图像组成的数据集“Gravity Spy(引力波)”中的引力波进行分类。本研究的目标是获得关于引力波的合理和有用的知识,并提出一种有效的深度学习网络系统来对引力波进行分类。该模型的准确率为99.34%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classifying the gravitational waves using the deep learning technique
Gravitational waves are related to the concept of vibration of space-time curvature. When the body of heavy masses lies on the four-dimensional space-time and changes their position with turbulence motion then actually they create a disturbance in the space. The disturbance travels outward from the origin having light velocity is known as gravitational waves. Laser Interferometer Gravitational-Wave Observatory (LIGO) scientific teamwork declared the identification of these waves. In this paper, we review Gravitational waves, Detection of gravitational waves, deep learning for the classification of gravitational waves. We design and develop a deep learning system to classification gravitational waves of the dataset ‘Gravity Spy (Gravitational waves)’ that is made up of the LIGO images. The goals of this research are to gain a piece of reasonable and useful knowledge about Gravitational waves and propose an effective deep learning network system to classify the gravitational waves. The accuracy achieved by our model is 99.34%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection and classification of metal surface defects using lite convolutional neural network (LCNN) Near-earth asteroids classification using NGBoost classifier Comparison of test methods for crevice corrosion propagation and repassivation potential of stainless steel AISI 316 Development of a credit risk evaluation system using multilayer neural networks Principles, properties and preparation of thermochromic materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1