用随机偏微分方程(SPDE)方法进行多高斯模拟

N. Desassis, D. Renard, M. Pereira, X. Freulon
{"title":"用随机偏微分方程(SPDE)方法进行多高斯模拟","authors":"N. Desassis, D. Renard, M. Pereira, X. Freulon","doi":"10.3997/2214-4609.201902174","DOIUrl":null,"url":null,"abstract":"Summary In this work, the Stochastic Partial Differential Equation approach is used to model the underlying Gaussian random fields in the PluriGaussian models. This approach allows to perform conditional simulations with computational complexity nearly independent of the size of the data sets. Furthermore, by using non-homogeneous operators, this framework allows to handle varying anisotropies and model complex geological structures. The model is presented and the proposed simulation algorithm is described. The methodology is illustrated through two synthetic data sets.","PeriodicalId":186806,"journal":{"name":"Petroleum Geostatistics 2019","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PluriGaussian Simulations with the Stochastic Partial Differential Equation (SPDE) Approach\",\"authors\":\"N. Desassis, D. Renard, M. Pereira, X. Freulon\",\"doi\":\"10.3997/2214-4609.201902174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary In this work, the Stochastic Partial Differential Equation approach is used to model the underlying Gaussian random fields in the PluriGaussian models. This approach allows to perform conditional simulations with computational complexity nearly independent of the size of the data sets. Furthermore, by using non-homogeneous operators, this framework allows to handle varying anisotropies and model complex geological structures. The model is presented and the proposed simulation algorithm is described. The methodology is illustrated through two synthetic data sets.\",\"PeriodicalId\":186806,\"journal\":{\"name\":\"Petroleum Geostatistics 2019\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Geostatistics 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201902174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geostatistics 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201902174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,使用随机偏微分方程方法来模拟多元高斯模型中潜在的高斯随机场。这种方法允许执行条件模拟,其计算复杂度几乎与数据集的大小无关。此外,通过使用非齐次算子,该框架允许处理不同的各向异性和模拟复杂的地质结构。给出了仿真模型,并给出了仿真算法。通过两个合成数据集说明了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PluriGaussian Simulations with the Stochastic Partial Differential Equation (SPDE) Approach
Summary In this work, the Stochastic Partial Differential Equation approach is used to model the underlying Gaussian random fields in the PluriGaussian models. This approach allows to perform conditional simulations with computational complexity nearly independent of the size of the data sets. Furthermore, by using non-homogeneous operators, this framework allows to handle varying anisotropies and model complex geological structures. The model is presented and the proposed simulation algorithm is described. The methodology is illustrated through two synthetic data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Forward Model Applied to Channelized Turbidite Systems: A Case Study of the Benin Major Valley Fill Stochastic Seismic Inversion Based on a Fuzzy Model A Bayesian Approach for Full-waveform Inversion Using Wide-aperture Seismic Data Ensemble-based Kernel Learning to Handle Rock-physics-model Imperfection in Seismic History Matching: A Real Field Case Study Features of Factor Models in Seismic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1