{"title":"基于路径分集感知的三维noc混合平面自适应路由算法","authors":"Jindun Dai, Renjie Li, Xin Jiang, Takahiro Watanabe","doi":"10.1109/ISQED.2018.8357277","DOIUrl":null,"url":null,"abstract":"3D Network-on-Chips (NoCs) is an efficient solution to multi-core communications. The routing algorithm has become a critical challenge for higher performance of NoCs. Performance of traditional methods based on the turn models degrades when the network gets saturated. To improve network stability after saturation, in this paper, a novel deadlock-free Path-Diversity-Aware Hybrid Planar Adaptive Routing (PDA-HyPAR) algorithm without using virtual channels is proposed. In this method, different routing rules are exploited in different XY-planes. And planar adaptive routing strategy is proposed to balance the network loads. We analyze path diversity theoretically and utilize path-diversity-aware selection strategy properly. Experimental results show that PDA-HyPAR is effective even if network load becomes heavy.","PeriodicalId":213351,"journal":{"name":"2018 19th International Symposium on Quality Electronic Design (ISQED)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"PDA-HyPAR: Path-diversity-aware hybrid planar adaptive routing algorithm for 3D NoCs\",\"authors\":\"Jindun Dai, Renjie Li, Xin Jiang, Takahiro Watanabe\",\"doi\":\"10.1109/ISQED.2018.8357277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D Network-on-Chips (NoCs) is an efficient solution to multi-core communications. The routing algorithm has become a critical challenge for higher performance of NoCs. Performance of traditional methods based on the turn models degrades when the network gets saturated. To improve network stability after saturation, in this paper, a novel deadlock-free Path-Diversity-Aware Hybrid Planar Adaptive Routing (PDA-HyPAR) algorithm without using virtual channels is proposed. In this method, different routing rules are exploited in different XY-planes. And planar adaptive routing strategy is proposed to balance the network loads. We analyze path diversity theoretically and utilize path-diversity-aware selection strategy properly. Experimental results show that PDA-HyPAR is effective even if network load becomes heavy.\",\"PeriodicalId\":213351,\"journal\":{\"name\":\"2018 19th International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 19th International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2018.8357277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 19th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2018.8357277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PDA-HyPAR: Path-diversity-aware hybrid planar adaptive routing algorithm for 3D NoCs
3D Network-on-Chips (NoCs) is an efficient solution to multi-core communications. The routing algorithm has become a critical challenge for higher performance of NoCs. Performance of traditional methods based on the turn models degrades when the network gets saturated. To improve network stability after saturation, in this paper, a novel deadlock-free Path-Diversity-Aware Hybrid Planar Adaptive Routing (PDA-HyPAR) algorithm without using virtual channels is proposed. In this method, different routing rules are exploited in different XY-planes. And planar adaptive routing strategy is proposed to balance the network loads. We analyze path diversity theoretically and utilize path-diversity-aware selection strategy properly. Experimental results show that PDA-HyPAR is effective even if network load becomes heavy.