{"title":"基于图像预处理、Guided Grad-CAM、机器学习和风险管理集成的Covid-19胸片图像分析","authors":"Tsung-Chieh Lin, Hsi-Chieh Lee","doi":"10.1145/3418094.3418096","DOIUrl":null,"url":null,"abstract":"COVID19 coronavirus has widely infected more than 10 million people and killed more than 500,000 globally till July 1, 2020. In this paper, we describe a potential methodology, integration of image preprocess, Guided Grad-CAM, machine learning and risk management based on chest radiography images, as one of workable alarm and analysis systems to support clinicians against COVID-19 outbreak threat. We leverage pre-trained CNN models as backbone with further transfer learning to analyze public open datasets composed of 5851 chest radiography images for 4 classes classification, and 15478 images from COVIDx dataset for 3 classes classification, facilitated with steps of ROI and mask, and CNN layer visualization of guided grad-CAM to help CNN focused on critical infection focus in qualitative perspective. In quantitative perspective of 4 classes classification result, accuracy, average sensitivity, average precision, and COVID19 sensitivity of single ResNet50 and our second bagging ensemble model are (77.2%/78.8%/81.9%/100%) and (81.5%/81.4%,86.8%/100%) respectively. Ensemble way of several CNNs and other machine learning methods used here is to contribute about 4% accuracy improvement on top of best single CNN (ResNet50). In our 3 classes classification, those metrics of ensemble model and benchmark are (93.1%/90.1%/89.7%/83%) and (90%/85.9%, 82.4%/77%). We conclude ensemble approach would facilitate weaker classifier more. Beside to accuracy-oriented analysis, a cost minimization approach is suggested here to provide clinicians options of different risk consideration flexibility by trade off among different categories and performance rates.","PeriodicalId":192804,"journal":{"name":"Proceedings of the 4th International Conference on Medical and Health Informatics","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Covid-19 Chest Radiography Images Analysis Based on Integration of Image Preprocess, Guided Grad-CAM, Machine Learning and Risk Management\",\"authors\":\"Tsung-Chieh Lin, Hsi-Chieh Lee\",\"doi\":\"10.1145/3418094.3418096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"COVID19 coronavirus has widely infected more than 10 million people and killed more than 500,000 globally till July 1, 2020. In this paper, we describe a potential methodology, integration of image preprocess, Guided Grad-CAM, machine learning and risk management based on chest radiography images, as one of workable alarm and analysis systems to support clinicians against COVID-19 outbreak threat. We leverage pre-trained CNN models as backbone with further transfer learning to analyze public open datasets composed of 5851 chest radiography images for 4 classes classification, and 15478 images from COVIDx dataset for 3 classes classification, facilitated with steps of ROI and mask, and CNN layer visualization of guided grad-CAM to help CNN focused on critical infection focus in qualitative perspective. In quantitative perspective of 4 classes classification result, accuracy, average sensitivity, average precision, and COVID19 sensitivity of single ResNet50 and our second bagging ensemble model are (77.2%/78.8%/81.9%/100%) and (81.5%/81.4%,86.8%/100%) respectively. Ensemble way of several CNNs and other machine learning methods used here is to contribute about 4% accuracy improvement on top of best single CNN (ResNet50). In our 3 classes classification, those metrics of ensemble model and benchmark are (93.1%/90.1%/89.7%/83%) and (90%/85.9%, 82.4%/77%). We conclude ensemble approach would facilitate weaker classifier more. Beside to accuracy-oriented analysis, a cost minimization approach is suggested here to provide clinicians options of different risk consideration flexibility by trade off among different categories and performance rates.\",\"PeriodicalId\":192804,\"journal\":{\"name\":\"Proceedings of the 4th International Conference on Medical and Health Informatics\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th International Conference on Medical and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3418094.3418096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Medical and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3418094.3418096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Covid-19 Chest Radiography Images Analysis Based on Integration of Image Preprocess, Guided Grad-CAM, Machine Learning and Risk Management
COVID19 coronavirus has widely infected more than 10 million people and killed more than 500,000 globally till July 1, 2020. In this paper, we describe a potential methodology, integration of image preprocess, Guided Grad-CAM, machine learning and risk management based on chest radiography images, as one of workable alarm and analysis systems to support clinicians against COVID-19 outbreak threat. We leverage pre-trained CNN models as backbone with further transfer learning to analyze public open datasets composed of 5851 chest radiography images for 4 classes classification, and 15478 images from COVIDx dataset for 3 classes classification, facilitated with steps of ROI and mask, and CNN layer visualization of guided grad-CAM to help CNN focused on critical infection focus in qualitative perspective. In quantitative perspective of 4 classes classification result, accuracy, average sensitivity, average precision, and COVID19 sensitivity of single ResNet50 and our second bagging ensemble model are (77.2%/78.8%/81.9%/100%) and (81.5%/81.4%,86.8%/100%) respectively. Ensemble way of several CNNs and other machine learning methods used here is to contribute about 4% accuracy improvement on top of best single CNN (ResNet50). In our 3 classes classification, those metrics of ensemble model and benchmark are (93.1%/90.1%/89.7%/83%) and (90%/85.9%, 82.4%/77%). We conclude ensemble approach would facilitate weaker classifier more. Beside to accuracy-oriented analysis, a cost minimization approach is suggested here to provide clinicians options of different risk consideration flexibility by trade off among different categories and performance rates.