{"title":"基于智能执行器的多驱动控制面故障网络容错控制策略","authors":"Inseok Yang, Donggil Kim, Dongik Lee","doi":"10.1109/ICMA.2011.5986306","DOIUrl":null,"url":null,"abstract":"Failure of an actuator in the multi-actuated control surfaces causes catastrophic structural failure due to oblique deflection. In this paper, a networked fault tolerant control strategy to accommodate actuator failure with an application to a modern aircraft is presented. The proposed control strategy is based on intelligent subsystems, such as smart actuators, that are interconnected through a bi-directional digital communication network. A smart actuator is capable of providing information on the device health status that can be used to tolerate faults. This information is then used not only to prevent undesirable force acting on the control surface by driving normal actuators, but also to tolerate the faulty surface by re-allocating redundant surfaces. Simulation results with an aircraft show that the proposed fault-tolerant control method can effectively maintain the desirable control performance in the presence of failure with an actuator in the control surface.","PeriodicalId":317730,"journal":{"name":"2011 IEEE International Conference on Mechatronics and Automation","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Networked fault-tolerant control strategy of multi-actuated control surface failure using smart actuators\",\"authors\":\"Inseok Yang, Donggil Kim, Dongik Lee\",\"doi\":\"10.1109/ICMA.2011.5986306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Failure of an actuator in the multi-actuated control surfaces causes catastrophic structural failure due to oblique deflection. In this paper, a networked fault tolerant control strategy to accommodate actuator failure with an application to a modern aircraft is presented. The proposed control strategy is based on intelligent subsystems, such as smart actuators, that are interconnected through a bi-directional digital communication network. A smart actuator is capable of providing information on the device health status that can be used to tolerate faults. This information is then used not only to prevent undesirable force acting on the control surface by driving normal actuators, but also to tolerate the faulty surface by re-allocating redundant surfaces. Simulation results with an aircraft show that the proposed fault-tolerant control method can effectively maintain the desirable control performance in the presence of failure with an actuator in the control surface.\",\"PeriodicalId\":317730,\"journal\":{\"name\":\"2011 IEEE International Conference on Mechatronics and Automation\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Mechatronics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA.2011.5986306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Mechatronics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2011.5986306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Networked fault-tolerant control strategy of multi-actuated control surface failure using smart actuators
Failure of an actuator in the multi-actuated control surfaces causes catastrophic structural failure due to oblique deflection. In this paper, a networked fault tolerant control strategy to accommodate actuator failure with an application to a modern aircraft is presented. The proposed control strategy is based on intelligent subsystems, such as smart actuators, that are interconnected through a bi-directional digital communication network. A smart actuator is capable of providing information on the device health status that can be used to tolerate faults. This information is then used not only to prevent undesirable force acting on the control surface by driving normal actuators, but also to tolerate the faulty surface by re-allocating redundant surfaces. Simulation results with an aircraft show that the proposed fault-tolerant control method can effectively maintain the desirable control performance in the presence of failure with an actuator in the control surface.