基于TCP的闭环流控制延迟性能估计方法

Ralf Lübben, M. Fidler
{"title":"基于TCP的闭环流控制延迟性能估计方法","authors":"Ralf Lübben, M. Fidler","doi":"10.1109/INFOCOM.2016.7524598","DOIUrl":null,"url":null,"abstract":"Closed-loop flow control protocols, such as the prominent implementation TCP, are prevalent in the Internet, today. TCP has continuously been improved for greedy traffic sources to achieve high throughput over networks with large bandwidth delay products. Recently, the increasing use for streaming and interactive applications, such as voice and video, has shifted the focus towards its delay performance. Given the need for real-time communication of non-greedy sources via TCP, we present an estimation method for performance evaluation of closed-loop flow control protocols. We characterize an end-to-end connection by a transfer function that provides statistical service guarantees for arbitrary traffic. The estimation is based on end-to-end measurements at the application level, that include all effects induced by the network and by the protocol stacks of the end systems. From our measurements, we identify different causes for delays. We show that significant delays are due to queueing in protocol stacks. Notably, this occurs even if the utilization is moderate. Using our estimation method, we compare the impact of fundamental mechanisms of TCP. In detail, we analyze buffer provisioning and its impact on delays at the application level. We find that a good selection can largely improve the delay performance of TCP.","PeriodicalId":274591,"journal":{"name":"IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Estimation method for the delay performance of closed-loop flow control with application to TCP\",\"authors\":\"Ralf Lübben, M. Fidler\",\"doi\":\"10.1109/INFOCOM.2016.7524598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Closed-loop flow control protocols, such as the prominent implementation TCP, are prevalent in the Internet, today. TCP has continuously been improved for greedy traffic sources to achieve high throughput over networks with large bandwidth delay products. Recently, the increasing use for streaming and interactive applications, such as voice and video, has shifted the focus towards its delay performance. Given the need for real-time communication of non-greedy sources via TCP, we present an estimation method for performance evaluation of closed-loop flow control protocols. We characterize an end-to-end connection by a transfer function that provides statistical service guarantees for arbitrary traffic. The estimation is based on end-to-end measurements at the application level, that include all effects induced by the network and by the protocol stacks of the end systems. From our measurements, we identify different causes for delays. We show that significant delays are due to queueing in protocol stacks. Notably, this occurs even if the utilization is moderate. Using our estimation method, we compare the impact of fundamental mechanisms of TCP. In detail, we analyze buffer provisioning and its impact on delays at the application level. We find that a good selection can largely improve the delay performance of TCP.\",\"PeriodicalId\":274591,\"journal\":{\"name\":\"IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOM.2016.7524598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM.2016.7524598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

闭环流控制协议,如著名的实现TCP,目前在Internet上很流行。为了在具有大带宽延迟产品的网络上实现高吞吐量,TCP不断地针对贪婪的流量源进行改进。最近,越来越多的流媒体和交互式应用程序(如语音和视频)的使用将重点转移到其延迟性能上。考虑到非贪婪源通过TCP进行实时通信的需要,提出了一种闭环流控制协议性能评估的估计方法。我们通过为任意流量提供统计服务保证的传递函数来表征端到端连接。该估计基于应用程序级别的端到端测量,包括由网络和终端系统的协议栈引起的所有影响。从我们的测量中,我们确定了延迟的不同原因。我们展示了显著的延迟是由于协议栈中的排队造成的。值得注意的是,即使利用率适中也会发生这种情况。使用我们的估计方法,我们比较了TCP的基本机制的影响。详细地,我们分析了缓冲区配置及其对应用程序级别延迟的影响。我们发现一个好的选择可以在很大程度上提高TCP的延迟性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation method for the delay performance of closed-loop flow control with application to TCP
Closed-loop flow control protocols, such as the prominent implementation TCP, are prevalent in the Internet, today. TCP has continuously been improved for greedy traffic sources to achieve high throughput over networks with large bandwidth delay products. Recently, the increasing use for streaming and interactive applications, such as voice and video, has shifted the focus towards its delay performance. Given the need for real-time communication of non-greedy sources via TCP, we present an estimation method for performance evaluation of closed-loop flow control protocols. We characterize an end-to-end connection by a transfer function that provides statistical service guarantees for arbitrary traffic. The estimation is based on end-to-end measurements at the application level, that include all effects induced by the network and by the protocol stacks of the end systems. From our measurements, we identify different causes for delays. We show that significant delays are due to queueing in protocol stacks. Notably, this occurs even if the utilization is moderate. Using our estimation method, we compare the impact of fundamental mechanisms of TCP. In detail, we analyze buffer provisioning and its impact on delays at the application level. We find that a good selection can largely improve the delay performance of TCP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heavy-traffic analysis of QoE optimality for on-demand video streams over fading channels The quest for resilient (static) forwarding tables CSMA networks in a many-sources regime: A mean-field approach Variability-aware request replication for latency curtailment Apps on the move: A fine-grained analysis of usage behavior of mobile apps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1