PMCNS:使用渐进式更严格的适应度标准来指导新颖性搜索

Jorge C. Gomes, P. Urbano, A. Christensen
{"title":"PMCNS:使用渐进式更严格的适应度标准来指导新颖性搜索","authors":"Jorge C. Gomes, P. Urbano, A. Christensen","doi":"10.4018/ijncr.2014040101","DOIUrl":null,"url":null,"abstract":"Novelty search is an evolutionary approach in which the population is driven towards behavioural innovation instead of towards a fixed objective. The use of behavioural novelty to score candidate solutions precludes convergence to local optima. However, in novelty search, significant effort may be spent on exploration of novel, but unfit behaviours. We propose progressive minimal criteria novelty search (PMCNS) to overcome this issue. In PMCNS, novelty search can freely explore the behaviour space as long as the solutions meet a progressively stricter fitness criterion. We evaluate the performance of our approach by evolving neurocontrollers for swarms of robots in two distinct tasks. Our results show that PMCNS outperforms fitness-based evolution and pure novelty search, and that PMCNS is superior to linear scalarisation of novelty and fitness scores. An analysis of behaviour space exploration shows that the benefits of novelty search are conserved in PMCNS despite the evolutionary pressure towards progressively fitter behaviours.","PeriodicalId":369881,"journal":{"name":"Int. J. Nat. Comput. Res.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"PMCNS: Using a Progressively Stricter Fitness Criterion to Guide Novelty Search\",\"authors\":\"Jorge C. Gomes, P. Urbano, A. Christensen\",\"doi\":\"10.4018/ijncr.2014040101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Novelty search is an evolutionary approach in which the population is driven towards behavioural innovation instead of towards a fixed objective. The use of behavioural novelty to score candidate solutions precludes convergence to local optima. However, in novelty search, significant effort may be spent on exploration of novel, but unfit behaviours. We propose progressive minimal criteria novelty search (PMCNS) to overcome this issue. In PMCNS, novelty search can freely explore the behaviour space as long as the solutions meet a progressively stricter fitness criterion. We evaluate the performance of our approach by evolving neurocontrollers for swarms of robots in two distinct tasks. Our results show that PMCNS outperforms fitness-based evolution and pure novelty search, and that PMCNS is superior to linear scalarisation of novelty and fitness scores. An analysis of behaviour space exploration shows that the benefits of novelty search are conserved in PMCNS despite the evolutionary pressure towards progressively fitter behaviours.\",\"PeriodicalId\":369881,\"journal\":{\"name\":\"Int. J. Nat. Comput. Res.\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Nat. Comput. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijncr.2014040101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nat. Comput. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijncr.2014040101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

新奇搜索是一种进化的方法,在这种方法中,人们被驱使着进行行为创新,而不是朝着固定的目标前进。使用行为新颖性对候选解进行评分排除了收敛到局部最优的可能性。然而,在新颖性搜索中,大量的精力可能花在探索新颖但不合适的行为上。我们提出渐进式最小标准新颖性搜索(PMCNS)来克服这个问题。在PMCNS中,新颖性搜索可以自由地探索行为空间,只要解满足逐步严格的适应度准则。我们通过进化神经控制器来评估我们的方法在两个不同任务中的机器人群的性能。我们的研究结果表明,PMCNS优于基于适应度的进化和纯粹的新颖性搜索,并且PMCNS优于新颖性和适应度分数的线性缩放。对行为空间探索的分析表明,尽管进化压力使PMCNS逐渐适应行为,但新颖性搜索的好处在PMCNS中是保守的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PMCNS: Using a Progressively Stricter Fitness Criterion to Guide Novelty Search
Novelty search is an evolutionary approach in which the population is driven towards behavioural innovation instead of towards a fixed objective. The use of behavioural novelty to score candidate solutions precludes convergence to local optima. However, in novelty search, significant effort may be spent on exploration of novel, but unfit behaviours. We propose progressive minimal criteria novelty search (PMCNS) to overcome this issue. In PMCNS, novelty search can freely explore the behaviour space as long as the solutions meet a progressively stricter fitness criterion. We evaluate the performance of our approach by evolving neurocontrollers for swarms of robots in two distinct tasks. Our results show that PMCNS outperforms fitness-based evolution and pure novelty search, and that PMCNS is superior to linear scalarisation of novelty and fitness scores. An analysis of behaviour space exploration shows that the benefits of novelty search are conserved in PMCNS despite the evolutionary pressure towards progressively fitter behaviours.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insights Into Incorporating Trustworthiness and Ethics in AI Systems With Explainable AI Concept Drift Adaptation in Intrusion Detection Systems Using Ensemble Learning Natural Computing of Human Facial Emotion Using Multi-Learning Fuzzy Approach Detection of Small Oranges Using YOLO v3 Feature Pyramid Mechanism Performance Parameter Evaluation of 7nm FinFET by Tuning Metal Work Function and High K Dielectrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1