{"title":"建模和交易的伦敦,纽约和法兰克福证券交易所与一个新的基因表达编程交易员工具","authors":"Andreas Karathanasopoulos","doi":"10.1002/isaf.1401","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The scope of this manuscript is to present a new short-term financial forecasting and trading tool: the Gene Expression Programming (GEP) Trader Tool. It is based on the gene expression programming algorithm. This algorithm is based on a genetic programming approach, and provides supreme statistical and trading performance when used for modelling and trading financial time series. The GEP Trader Tool is offered through a user-friendly standalone Java interface. This paper applies the GEP Trader Tool to the task of forecasting and trading the future contracts of FTSE100, DAX30 and S&P500 daily closing prices from 2000 to 2015. It is the first time that gene expression programming has been used in such massive datasets. The model's performance is benchmarked against linear and nonlinear models such as random walk model, a moving-average convergence divergence model, an autoregressive moving average model, a genetic programming algorithm, a multilayer perceptron neural network, a recurrent neural network a higher order neural network. To gauge the accuracy of all models, both statistical and trading performances are measured. Experimental results indicate that the proposed approach outperforms all the others in the in-sample and out-of-sample periods by producing superior empirical results. Furthermore, the trading performances are improved further when trading strategies are imposed on each of the models.</p>\n </div>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"24 1","pages":"3-11"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/isaf.1401","citationCount":"4","resultStr":"{\"title\":\"Modelling and trading the London, New York and Frankfurt stock exchanges with a new gene expression programming trader tool\",\"authors\":\"Andreas Karathanasopoulos\",\"doi\":\"10.1002/isaf.1401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The scope of this manuscript is to present a new short-term financial forecasting and trading tool: the Gene Expression Programming (GEP) Trader Tool. It is based on the gene expression programming algorithm. This algorithm is based on a genetic programming approach, and provides supreme statistical and trading performance when used for modelling and trading financial time series. The GEP Trader Tool is offered through a user-friendly standalone Java interface. This paper applies the GEP Trader Tool to the task of forecasting and trading the future contracts of FTSE100, DAX30 and S&P500 daily closing prices from 2000 to 2015. It is the first time that gene expression programming has been used in such massive datasets. The model's performance is benchmarked against linear and nonlinear models such as random walk model, a moving-average convergence divergence model, an autoregressive moving average model, a genetic programming algorithm, a multilayer perceptron neural network, a recurrent neural network a higher order neural network. To gauge the accuracy of all models, both statistical and trading performances are measured. Experimental results indicate that the proposed approach outperforms all the others in the in-sample and out-of-sample periods by producing superior empirical results. Furthermore, the trading performances are improved further when trading strategies are imposed on each of the models.</p>\\n </div>\",\"PeriodicalId\":53473,\"journal\":{\"name\":\"Intelligent Systems in Accounting, Finance and Management\",\"volume\":\"24 1\",\"pages\":\"3-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/isaf.1401\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems in Accounting, Finance and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
Modelling and trading the London, New York and Frankfurt stock exchanges with a new gene expression programming trader tool
The scope of this manuscript is to present a new short-term financial forecasting and trading tool: the Gene Expression Programming (GEP) Trader Tool. It is based on the gene expression programming algorithm. This algorithm is based on a genetic programming approach, and provides supreme statistical and trading performance when used for modelling and trading financial time series. The GEP Trader Tool is offered through a user-friendly standalone Java interface. This paper applies the GEP Trader Tool to the task of forecasting and trading the future contracts of FTSE100, DAX30 and S&P500 daily closing prices from 2000 to 2015. It is the first time that gene expression programming has been used in such massive datasets. The model's performance is benchmarked against linear and nonlinear models such as random walk model, a moving-average convergence divergence model, an autoregressive moving average model, a genetic programming algorithm, a multilayer perceptron neural network, a recurrent neural network a higher order neural network. To gauge the accuracy of all models, both statistical and trading performances are measured. Experimental results indicate that the proposed approach outperforms all the others in the in-sample and out-of-sample periods by producing superior empirical results. Furthermore, the trading performances are improved further when trading strategies are imposed on each of the models.
期刊介绍:
Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.