有符号距离函数估计的运算

Csaba Bálint, Gábor Valasek, L. Gergó
{"title":"有符号距离函数估计的运算","authors":"Csaba Bálint, Gábor Valasek, L. Gergó","doi":"10.14733/cadconfp.2022.329-333","DOIUrl":null,"url":null,"abstract":"Introduction: Our paper presents a general theoretical framework to investigate the quantitative aspects of bounding distance functions. We propose a precision de nition that quanti es the accuracy of the min/max representation of set-theoretic operations [5] in the entire space and demonstrate how the precision and the geometric con guration of the arguments determine the accuracy of the resulting approximation. Our theorems can be applied in an arbitrary geometrical context, e.g., for objects with or without volumes, implicit curves, non-di erentiable or non-manifold surfaces, fractals, and any combination of these. We identify a subset of Hart's signed distance lower bounds [3] called signed distance function estimates (SDFE) and show that the sphere tracing algorithm retains convergence under set-theoretic union and intersection operations, a result for which a general derivation has not yet been presented. Most so-called distance estimates used by the industry and the online creative coding communities such as ShaderToy are SDFEs, placing no practical restrictions on the applicability of our results. This paper builds upon the theoretical results of Luo et al. [4], Bálint et al.[1], and Valasek et al. [6].","PeriodicalId":316648,"journal":{"name":"CAD'22 Proceedings","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operations on Signed Distance Function Estimates\",\"authors\":\"Csaba Bálint, Gábor Valasek, L. Gergó\",\"doi\":\"10.14733/cadconfp.2022.329-333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Our paper presents a general theoretical framework to investigate the quantitative aspects of bounding distance functions. We propose a precision de nition that quanti es the accuracy of the min/max representation of set-theoretic operations [5] in the entire space and demonstrate how the precision and the geometric con guration of the arguments determine the accuracy of the resulting approximation. Our theorems can be applied in an arbitrary geometrical context, e.g., for objects with or without volumes, implicit curves, non-di erentiable or non-manifold surfaces, fractals, and any combination of these. We identify a subset of Hart's signed distance lower bounds [3] called signed distance function estimates (SDFE) and show that the sphere tracing algorithm retains convergence under set-theoretic union and intersection operations, a result for which a general derivation has not yet been presented. Most so-called distance estimates used by the industry and the online creative coding communities such as ShaderToy are SDFEs, placing no practical restrictions on the applicability of our results. This paper builds upon the theoretical results of Luo et al. [4], Bálint et al.[1], and Valasek et al. [6].\",\"PeriodicalId\":316648,\"journal\":{\"name\":\"CAD'22 Proceedings\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAD'22 Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14733/cadconfp.2022.329-333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAD'22 Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14733/cadconfp.2022.329-333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个研究边界距离函数定量方面的一般理论框架。我们提出了一个精度定义,用于量化集合论运算[5]在整个空间中的最小/最大表示的精度,并演示了参数的精度和几何配置如何决定结果逼近的精度。我们的定理可以应用于任意几何环境,例如,有或没有体积的物体,隐曲线,不可微分或非流形表面,分形,以及这些的任何组合。我们确定了Hart的有符号距离下界[3]的一个子集,称为有符号距离函数估计(SDFE),并证明了球跟踪算法在集合论并和交操作下保持收敛性,这一结果尚未给出一般的推导。业界和在线创意编码社区(如ShaderToy)使用的大多数所谓的距离估计都是sdfe,这对我们的结果的适用性没有实际限制。本文基于Luo等[4]、Bálint等[1]和Valasek等[6]的理论成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Operations on Signed Distance Function Estimates
Introduction: Our paper presents a general theoretical framework to investigate the quantitative aspects of bounding distance functions. We propose a precision de nition that quanti es the accuracy of the min/max representation of set-theoretic operations [5] in the entire space and demonstrate how the precision and the geometric con guration of the arguments determine the accuracy of the resulting approximation. Our theorems can be applied in an arbitrary geometrical context, e.g., for objects with or without volumes, implicit curves, non-di erentiable or non-manifold surfaces, fractals, and any combination of these. We identify a subset of Hart's signed distance lower bounds [3] called signed distance function estimates (SDFE) and show that the sphere tracing algorithm retains convergence under set-theoretic union and intersection operations, a result for which a general derivation has not yet been presented. Most so-called distance estimates used by the industry and the online creative coding communities such as ShaderToy are SDFEs, placing no practical restrictions on the applicability of our results. This paper builds upon the theoretical results of Luo et al. [4], Bálint et al.[1], and Valasek et al. [6].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proceedings of CAD’22, Beijing, China, July 11-13, 2022, 282-286 © 2022 CAD Solutions, LLC, http://www.cad-conference.net Title: Perspectives on User’s Acceptance of Human-machine Interface in Autonomous Vehicles Enhancing Size Perception with True-Size Viewing CAD plug-in and Cloud-enabled AR APP Design Automation of Lattice-based Customized Orthopedic for Load-bearing Implants Reconfigurable Soft Robots based on Modular Design Operations on Signed Distance Function Estimates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1