碳化铝粉末物理和结构特性的表征:生物场处理的影响

M. Trivedi, R. M. Tallapragada, A. Branton, Dahryn Trivedi, G. Nayak, Omprakash Latiyal, S. Jana
{"title":"碳化铝粉末物理和结构特性的表征:生物场处理的影响","authors":"M. Trivedi, R. M. Tallapragada, A. Branton, Dahryn Trivedi, G. Nayak, Omprakash Latiyal, S. Jana","doi":"10.4172/2168-9792.1000142","DOIUrl":null,"url":null,"abstract":"Aluminium carbide (Al4C3) has gained extensive attention due to its abrasive and creep resistance properties. Aim of the present study was to evaluate the impact of biofield treatment on physical and structural properties of Al4C3 powder. The Al4C3 powder was divided into two parts i.e. control and treated. Control part was remained as untreated and treated part received biofield treatment. Subsequently, control and treated Al4C3 samples were characterized using X-ray diffraction (XRD), surface area analyser and Fourier transform infrared spectroscopy (FTIR). XRD data revealed that lattice parameter and unit cell volume of treated Al4C3 samples were increased by 0.33 and 0.66% respectively, as compared to control. The density of treated Al4C3 samples was reduced upto 0.65% as compared to control. In addition, the molecular weight and crystallite size of treated Al4C3 samples were increased upto 0.66 and 249.53% respectively as compared to control. Furthermore, surface area of treated Al4C3 sample was increased by 5% as compared to control. The FT-IR spectra revealed no significant change in absorption peaks of treated Al4C3 samples as compared to control. Thus, XRD and surface area results suggest that biofield treatment has substantially altered the physical and structural properties of treated Al4C3 powder","PeriodicalId":356774,"journal":{"name":"Journal of Aeronautics and Aerospace Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":"{\"title\":\"Characterization of Physical and Structural Properties of Aluminium Carbide Powder: Impact of Biofield Treatment\",\"authors\":\"M. Trivedi, R. M. Tallapragada, A. Branton, Dahryn Trivedi, G. Nayak, Omprakash Latiyal, S. Jana\",\"doi\":\"10.4172/2168-9792.1000142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aluminium carbide (Al4C3) has gained extensive attention due to its abrasive and creep resistance properties. Aim of the present study was to evaluate the impact of biofield treatment on physical and structural properties of Al4C3 powder. The Al4C3 powder was divided into two parts i.e. control and treated. Control part was remained as untreated and treated part received biofield treatment. Subsequently, control and treated Al4C3 samples were characterized using X-ray diffraction (XRD), surface area analyser and Fourier transform infrared spectroscopy (FTIR). XRD data revealed that lattice parameter and unit cell volume of treated Al4C3 samples were increased by 0.33 and 0.66% respectively, as compared to control. The density of treated Al4C3 samples was reduced upto 0.65% as compared to control. In addition, the molecular weight and crystallite size of treated Al4C3 samples were increased upto 0.66 and 249.53% respectively as compared to control. Furthermore, surface area of treated Al4C3 sample was increased by 5% as compared to control. The FT-IR spectra revealed no significant change in absorption peaks of treated Al4C3 samples as compared to control. Thus, XRD and surface area results suggest that biofield treatment has substantially altered the physical and structural properties of treated Al4C3 powder\",\"PeriodicalId\":356774,\"journal\":{\"name\":\"Journal of Aeronautics and Aerospace Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"94\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aeronautics and Aerospace Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2168-9792.1000142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aeronautics and Aerospace Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9792.1000142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 94

摘要

碳化铝(Al4C3)因其耐磨性和抗蠕变性而受到广泛关注。本研究的目的是评价生物场处理对Al4C3粉体物理结构性能的影响。将Al4C3粉末分为对照和处理两部分。对照组未处理,处理组进行生物场处理。随后,利用x射线衍射(XRD)、表面积分析仪和傅里叶变换红外光谱(FTIR)对对照和处理后的Al4C3样品进行了表征。XRD数据显示,处理后的Al4C3样品的晶格参数和单位胞体积分别比对照提高了0.33%和0.66%。与对照相比,处理后的Al4C3样品的密度降低了0.65%。处理后的Al4C3样品的分子量和晶粒尺寸分别比对照提高了0.66和249.53%。此外,处理后的Al4C3样品的表面积比对照增加了5%。FT-IR光谱显示,处理后的Al4C3样品的吸收峰与对照相比无显著变化。因此,XRD和比表面积结果表明,生物场处理大大改变了处理过的Al4C3粉末的物理和结构性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization of Physical and Structural Properties of Aluminium Carbide Powder: Impact of Biofield Treatment
Aluminium carbide (Al4C3) has gained extensive attention due to its abrasive and creep resistance properties. Aim of the present study was to evaluate the impact of biofield treatment on physical and structural properties of Al4C3 powder. The Al4C3 powder was divided into two parts i.e. control and treated. Control part was remained as untreated and treated part received biofield treatment. Subsequently, control and treated Al4C3 samples were characterized using X-ray diffraction (XRD), surface area analyser and Fourier transform infrared spectroscopy (FTIR). XRD data revealed that lattice parameter and unit cell volume of treated Al4C3 samples were increased by 0.33 and 0.66% respectively, as compared to control. The density of treated Al4C3 samples was reduced upto 0.65% as compared to control. In addition, the molecular weight and crystallite size of treated Al4C3 samples were increased upto 0.66 and 249.53% respectively as compared to control. Furthermore, surface area of treated Al4C3 sample was increased by 5% as compared to control. The FT-IR spectra revealed no significant change in absorption peaks of treated Al4C3 samples as compared to control. Thus, XRD and surface area results suggest that biofield treatment has substantially altered the physical and structural properties of treated Al4C3 powder
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanical Behavior of a Fuselage Stiffened Carbon-Epoxy Panel under Debonding Load On the Modeling of Light Aircraft Landing Gears Various aspects of situation awareness with respect to human-machine-interaction while using optoavionic cockpit instrumentation in aircraft Autopilot Design of Unmanned Aerial Vehicle A New Methodology for Aerodynamic Design and Analysis of a Small Scale Blended Wing Body
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1