宴会:在自适应视频流中平衡体验质量和流量

Takuto Kimura, Tatsuaki Kimura, A. Matsumoto, J. Okamoto
{"title":"宴会:在自适应视频流中平衡体验质量和流量","authors":"Takuto Kimura, Tatsuaki Kimura, A. Matsumoto, J. Okamoto","doi":"10.23919/CNSM46954.2019.9012685","DOIUrl":null,"url":null,"abstract":"Bitrate-selection algorithms are key to improving the quality of experience (QoE) of adaptive video streaming. Although current bitrate selection algorithms maximize the QoE, video consumers are concerned with QoE and traffic-volume usage due to the pay-per-use or data-capped plans. To balance between the QoE and traffic volume, some commercial video-streaming services enable users to set the upper limit of the selectable bitrate. However, it is difficult for users to set an appropriate limit to obtain sufficient QoE. We propose BANQUET, a novel bitrate-selection algorithm that enables users to control intuitively the balance between the QoE and traffic volume. Assuming a user-set target QoE as a balancing parameter, BANQUET selects the bitrate that minimizes the traffic volume while maintaining the estimated mean opinion score (MOS) above the target QoE. BANQUET calculates the appropriate bitrate based on estimations of the throughput and butter transition. A trace-based simulation shows that BANQUET reduces the traffic volume by up to 47.0% compared to a baseline while maintaining the same average estimated MOS.","PeriodicalId":273818,"journal":{"name":"2019 15th International Conference on Network and Service Management (CNSM)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"BANQUET: Balancing Quality of Experience and Traffic Volume in Adaptive Video Streaming\",\"authors\":\"Takuto Kimura, Tatsuaki Kimura, A. Matsumoto, J. Okamoto\",\"doi\":\"10.23919/CNSM46954.2019.9012685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bitrate-selection algorithms are key to improving the quality of experience (QoE) of adaptive video streaming. Although current bitrate selection algorithms maximize the QoE, video consumers are concerned with QoE and traffic-volume usage due to the pay-per-use or data-capped plans. To balance between the QoE and traffic volume, some commercial video-streaming services enable users to set the upper limit of the selectable bitrate. However, it is difficult for users to set an appropriate limit to obtain sufficient QoE. We propose BANQUET, a novel bitrate-selection algorithm that enables users to control intuitively the balance between the QoE and traffic volume. Assuming a user-set target QoE as a balancing parameter, BANQUET selects the bitrate that minimizes the traffic volume while maintaining the estimated mean opinion score (MOS) above the target QoE. BANQUET calculates the appropriate bitrate based on estimations of the throughput and butter transition. A trace-based simulation shows that BANQUET reduces the traffic volume by up to 47.0% compared to a baseline while maintaining the same average estimated MOS.\",\"PeriodicalId\":273818,\"journal\":{\"name\":\"2019 15th International Conference on Network and Service Management (CNSM)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th International Conference on Network and Service Management (CNSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CNSM46954.2019.9012685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CNSM46954.2019.9012685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

比特率选择算法是提高自适应视频流体验质量的关键。尽管当前的比特率选择算法最大化了QoE,但由于按次付费或数据上限计划,视频消费者关心的是QoE和流量使用量。为了平衡qos和流量,一些商业视频流业务允许用户设置可选择比特率的上限。然而,用户很难设定一个适当的限制来获得足够的QoE。我们提出了一种新的比特率选择算法BANQUET,使用户能够直观地控制QoE和流量之间的平衡。假设用户设置的目标QoE作为平衡参数,BANQUET选择在保持估计的平均意见评分(MOS)高于目标QoE的情况下最小化流量的比特率。BANQUET根据吞吐量和黄油转换的估计计算适当的比特率。基于跟踪的模拟表明,与基线相比,BANQUET在保持相同的平均估计MOS的同时,将通信量减少了高达47.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BANQUET: Balancing Quality of Experience and Traffic Volume in Adaptive Video Streaming
Bitrate-selection algorithms are key to improving the quality of experience (QoE) of adaptive video streaming. Although current bitrate selection algorithms maximize the QoE, video consumers are concerned with QoE and traffic-volume usage due to the pay-per-use or data-capped plans. To balance between the QoE and traffic volume, some commercial video-streaming services enable users to set the upper limit of the selectable bitrate. However, it is difficult for users to set an appropriate limit to obtain sufficient QoE. We propose BANQUET, a novel bitrate-selection algorithm that enables users to control intuitively the balance between the QoE and traffic volume. Assuming a user-set target QoE as a balancing parameter, BANQUET selects the bitrate that minimizes the traffic volume while maintaining the estimated mean opinion score (MOS) above the target QoE. BANQUET calculates the appropriate bitrate based on estimations of the throughput and butter transition. A trace-based simulation shows that BANQUET reduces the traffic volume by up to 47.0% compared to a baseline while maintaining the same average estimated MOS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flow-based Throughput Prediction using Deep Learning and Real-World Network Traffic Learning From Evolving Network Data for Dependable Botnet Detection Exploring NAT Detection and Host Identification Using Machine Learning Lumped Markovian Estimation for Wi-Fi Channel Utilization Prediction An Access Control Implementation Targeting Resource-constrained Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1