高阶调度的轨迹能量优化

Oskar Wigström, B. Lennartson
{"title":"高阶调度的轨迹能量优化","authors":"Oskar Wigström, B. Lennartson","doi":"10.1109/CASE.2011.6042472","DOIUrl":null,"url":null,"abstract":"Minimization of energy consumption is today an issue of utmost importance in manufacturing industry. A previously presented technique for scheduling of robot cells, which exploits variable execution time for the individual robot operations, has shown promising results in energy minimization. In order to slow down a manipulator's movement the method utilizes a linear time scaling of the time optimal trajectory. This paper attempts to improve the scheduling method by generating energy optimal data using dynamic time scaling. Dynamic programming can be applied to an existing trajectory and generate a new energy optimal trajectory that follows the same path but with another execution time. With the new method, it is possible to solve the optimization problem for a range of execution times in one run. A simple two-joint planar example is presented in which energy optimal dynamic time scaling is compared to linear time scaling. The results show a small decrease in energy usage for minor scaling, but a significant reduction for longer execution times.","PeriodicalId":236208,"journal":{"name":"2011 IEEE International Conference on Automation Science and Engineering","volume":"393 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Energy optimization of trajectories for high level scheduling\",\"authors\":\"Oskar Wigström, B. Lennartson\",\"doi\":\"10.1109/CASE.2011.6042472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Minimization of energy consumption is today an issue of utmost importance in manufacturing industry. A previously presented technique for scheduling of robot cells, which exploits variable execution time for the individual robot operations, has shown promising results in energy minimization. In order to slow down a manipulator's movement the method utilizes a linear time scaling of the time optimal trajectory. This paper attempts to improve the scheduling method by generating energy optimal data using dynamic time scaling. Dynamic programming can be applied to an existing trajectory and generate a new energy optimal trajectory that follows the same path but with another execution time. With the new method, it is possible to solve the optimization problem for a range of execution times in one run. A simple two-joint planar example is presented in which energy optimal dynamic time scaling is compared to linear time scaling. The results show a small decrease in energy usage for minor scaling, but a significant reduction for longer execution times.\",\"PeriodicalId\":236208,\"journal\":{\"name\":\"2011 IEEE International Conference on Automation Science and Engineering\",\"volume\":\"393 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Automation Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE.2011.6042472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Automation Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE.2011.6042472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

能源消耗的最小化是当今制造业最重要的问题。先前提出的机器人单元调度技术利用单个机器人操作的可变执行时间,在能量最小化方面显示出有希望的结果。该方法利用时间最优轨迹的线性时间尺度来减缓机械臂的运动速度。本文尝试通过动态时间尺度生成能量最优数据来改进调度方法。动态规划可以应用于已有的轨迹,生成新的能量最优轨迹,该轨迹遵循相同的路径,但执行时间不同。使用新方法,可以在一次运行中解决一系列执行时间的优化问题。给出了一个简单的双关节平面算例,将能量最优动态时间标度与线性时间标度进行了比较。结果显示,对于较小的扩展,能源使用略有减少,但对于较长的执行时间,则显著减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy optimization of trajectories for high level scheduling
Minimization of energy consumption is today an issue of utmost importance in manufacturing industry. A previously presented technique for scheduling of robot cells, which exploits variable execution time for the individual robot operations, has shown promising results in energy minimization. In order to slow down a manipulator's movement the method utilizes a linear time scaling of the time optimal trajectory. This paper attempts to improve the scheduling method by generating energy optimal data using dynamic time scaling. Dynamic programming can be applied to an existing trajectory and generate a new energy optimal trajectory that follows the same path but with another execution time. With the new method, it is possible to solve the optimization problem for a range of execution times in one run. A simple two-joint planar example is presented in which energy optimal dynamic time scaling is compared to linear time scaling. The results show a small decrease in energy usage for minor scaling, but a significant reduction for longer execution times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A unified approach for the scheduling problem with rejection Designing maximally permissive deadlock avoidance policies for sequential resource allocation systems through classification theory Modeling and analysis of care delivery services within patient rooms Feedback control of machine startup for energy-efficient manufacturing in Bernoulli serial lines On the combination of fuzzy models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1