数据中心网络中业务功能链布局的一种基于图的启发式算法

Meng Niu, B. Cheng, Junliang Chen
{"title":"数据中心网络中业务功能链布局的一种基于图的启发式算法","authors":"Meng Niu, B. Cheng, Junliang Chen","doi":"10.1109/SCC49832.2020.00041","DOIUrl":null,"url":null,"abstract":"Network Function Virtualization (NFV) is a promising technology. Connecting Virtual Network Functions (VNFs) forms Service Function Chains (SFCs). SFCs can flexibly orchestrate and expand network functions. However, the SFCs perform network functions that require very high reliability, even reaching the level of physical switches. Therefore, the influence of physical machines and network links can no longer be ignored when considering the reliability of SFCs. This paper proposes the Graph-based Particle Swarm Optimization (GPSO) algorithm to address the SFC placement problem. GPSO adopts a novel velocity update strategy that can adapt to the non-Euclidean structure of the physical machine topology in the data center. Compared to traditional heuristic algorithms, GPSO only needs 57% execution time and can achieve 110% fitness value. Moreover, the GPSO algorithm can trade-off reliability and resource utilization. The evaluation results show that GPSO achieves higher reliability than the state of the art algorithms under the threshold of 80% resource utilization.","PeriodicalId":274909,"journal":{"name":"2020 IEEE International Conference on Services Computing (SCC)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"GPSO: A Graph-based Heuristic Algorithm for Service Function Chain Placement in Data Center Networks\",\"authors\":\"Meng Niu, B. Cheng, Junliang Chen\",\"doi\":\"10.1109/SCC49832.2020.00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network Function Virtualization (NFV) is a promising technology. Connecting Virtual Network Functions (VNFs) forms Service Function Chains (SFCs). SFCs can flexibly orchestrate and expand network functions. However, the SFCs perform network functions that require very high reliability, even reaching the level of physical switches. Therefore, the influence of physical machines and network links can no longer be ignored when considering the reliability of SFCs. This paper proposes the Graph-based Particle Swarm Optimization (GPSO) algorithm to address the SFC placement problem. GPSO adopts a novel velocity update strategy that can adapt to the non-Euclidean structure of the physical machine topology in the data center. Compared to traditional heuristic algorithms, GPSO only needs 57% execution time and can achieve 110% fitness value. Moreover, the GPSO algorithm can trade-off reliability and resource utilization. The evaluation results show that GPSO achieves higher reliability than the state of the art algorithms under the threshold of 80% resource utilization.\",\"PeriodicalId\":274909,\"journal\":{\"name\":\"2020 IEEE International Conference on Services Computing (SCC)\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Services Computing (SCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCC49832.2020.00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Services Computing (SCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC49832.2020.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

网络功能虚拟化(NFV)是一项很有前途的技术。连接虚拟网络功能(VNFs)形成业务功能链(sfc)。sfc可以灵活编排和扩展网络功能。但是,sfc可以完成对可靠性要求很高的网络功能,甚至可以达到物理交换机的水平。因此,在考虑sfc的可靠性时,不能再忽视物理机和网络链路的影响。本文提出了基于图的粒子群优化算法(GPSO)来解决SFC的放置问题。GPSO采用了一种新颖的速度更新策略,能够适应数据中心物理机器拓扑结构的非欧几里德结构。与传统的启发式算法相比,GPSO只需57%的执行时间,即可达到110%的适应度值。此外,GPSO算法可以权衡可靠性和资源利用率。评估结果表明,在80%的资源利用率阈值下,GPSO比现有算法具有更高的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPSO: A Graph-based Heuristic Algorithm for Service Function Chain Placement in Data Center Networks
Network Function Virtualization (NFV) is a promising technology. Connecting Virtual Network Functions (VNFs) forms Service Function Chains (SFCs). SFCs can flexibly orchestrate and expand network functions. However, the SFCs perform network functions that require very high reliability, even reaching the level of physical switches. Therefore, the influence of physical machines and network links can no longer be ignored when considering the reliability of SFCs. This paper proposes the Graph-based Particle Swarm Optimization (GPSO) algorithm to address the SFC placement problem. GPSO adopts a novel velocity update strategy that can adapt to the non-Euclidean structure of the physical machine topology in the data center. Compared to traditional heuristic algorithms, GPSO only needs 57% execution time and can achieve 110% fitness value. Moreover, the GPSO algorithm can trade-off reliability and resource utilization. The evaluation results show that GPSO achieves higher reliability than the state of the art algorithms under the threshold of 80% resource utilization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the SCC 2020 Chairs A Process Convergence Approach for Crossover Services based on Message Flow Partition and Merging SCC 2020 Organizing Commitee An IoT-owned Service for Global IoT Device Discovery, Integration and (Re)use PETA: Privacy Enabled Task Allocation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1