THEOS图像的自然色彩增强

Wilawun Punmanee, T. Kasetkasem, T. Chanwimaluang, A. Nishihara
{"title":"THEOS图像的自然色彩增强","authors":"Wilawun Punmanee, T. Kasetkasem, T. Chanwimaluang, A. Nishihara","doi":"10.1109/ISCIT.2013.6645914","DOIUrl":null,"url":null,"abstract":"Color naturalness is crucial for visual interpretation and display of satellite images. Since optical sensors in some satellite such as THEOS do not cover the whole wavelength range of red, green and blue color spectrums, the captured images may appear to have unnatural colors. It is imperative to correct the unnatural colors in these images. To achieve this goal, we must first measure the color naturalness of satellite images. As a result, we propose a novel metric for measuring color naturalness through the satellite image color naturalness index (SICNI). Here, the SICNI is desired to measure color naturalness of satellite images based on the perception of the human visual system. We compare the SICNI with evaluation from satellite image experts, and achieve the correlation score of 0.897. Based on the proposed SICNI, we develop the color enhancement algorithm for satellite images by transformation of color vectors in the CIELUV color space such that the SICNI is maximized.","PeriodicalId":356009,"journal":{"name":"2013 13th International Symposium on Communications and Information Technologies (ISCIT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Naturalness color enhancement for THEOS images\",\"authors\":\"Wilawun Punmanee, T. Kasetkasem, T. Chanwimaluang, A. Nishihara\",\"doi\":\"10.1109/ISCIT.2013.6645914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Color naturalness is crucial for visual interpretation and display of satellite images. Since optical sensors in some satellite such as THEOS do not cover the whole wavelength range of red, green and blue color spectrums, the captured images may appear to have unnatural colors. It is imperative to correct the unnatural colors in these images. To achieve this goal, we must first measure the color naturalness of satellite images. As a result, we propose a novel metric for measuring color naturalness through the satellite image color naturalness index (SICNI). Here, the SICNI is desired to measure color naturalness of satellite images based on the perception of the human visual system. We compare the SICNI with evaluation from satellite image experts, and achieve the correlation score of 0.897. Based on the proposed SICNI, we develop the color enhancement algorithm for satellite images by transformation of color vectors in the CIELUV color space such that the SICNI is maximized.\",\"PeriodicalId\":356009,\"journal\":{\"name\":\"2013 13th International Symposium on Communications and Information Technologies (ISCIT)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 13th International Symposium on Communications and Information Technologies (ISCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCIT.2013.6645914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th International Symposium on Communications and Information Technologies (ISCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCIT.2013.6645914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

色彩的自然度对卫星图像的视觉解释和显示至关重要。由于某些卫星(如THEOS)的光学传感器不能覆盖红、绿、蓝光谱的整个波长范围,因此捕获的图像可能会出现不自然的颜色。纠正这些图像中不自然的颜色是必要的。要实现这一目标,首先要测量卫星图像的色彩自然度。因此,我们提出了一种通过卫星图像颜色自然度指数(SICNI)来测量颜色自然度的新度量。在这里,希望SICNI基于人类视觉系统的感知来测量卫星图像的颜色自然度。我们将SICNI与卫星图像专家的评价进行了比较,相关分数为0.897。在此基础上,通过对CIELUV颜色空间中的颜色向量进行变换,开发了卫星图像的颜色增强算法,使SICNI最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Naturalness color enhancement for THEOS images
Color naturalness is crucial for visual interpretation and display of satellite images. Since optical sensors in some satellite such as THEOS do not cover the whole wavelength range of red, green and blue color spectrums, the captured images may appear to have unnatural colors. It is imperative to correct the unnatural colors in these images. To achieve this goal, we must first measure the color naturalness of satellite images. As a result, we propose a novel metric for measuring color naturalness through the satellite image color naturalness index (SICNI). Here, the SICNI is desired to measure color naturalness of satellite images based on the perception of the human visual system. We compare the SICNI with evaluation from satellite image experts, and achieve the correlation score of 0.897. Based on the proposed SICNI, we develop the color enhancement algorithm for satellite images by transformation of color vectors in the CIELUV color space such that the SICNI is maximized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance evaluation of ETX metric on OLSR in heterogeneous networks Real-time advisory service for orchid care Realtime transmission of full high-definition 30 frames/s videos over 8×8 MIMO-OFDM channels using HACP-based lossless coding Design of ZigBee based WSN for smart demand responsive home energy management system Receptive field resolution analysis in convolutional feature extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1