利用高密度微电极阵列对玻璃微移液进行盲定位的影响因素

M. Obien, A. Hierlemann, U. Frey
{"title":"利用高密度微电极阵列对玻璃微移液进行盲定位的影响因素","authors":"M. Obien, A. Hierlemann, U. Frey","doi":"10.1109/ICSENS.2013.6688361","DOIUrl":null,"url":null,"abstract":"High-density microelectrode arrays (HDMEAs) provide the capability to measure extracellular electric potential from brain slices and dissociated cell cultures at high spatiotemporal resolution, which is attractive for neuroscience. Since the HDMEA enables to record the activity of single neurons at sub-cellular resolution, a combination with intracellular recording techniques, such as patch clamp, will allow for new in vitro experiments. Such combination technique requires precise localization of both the cell of interest and the glass micropipette (GM) with respect to the HDMEA. Here, we present a methodology to locate the three-dimensional (3D) position of a GM on the HDMEA without the use of an optical microscope. For the (x, y) position, the achieved accuracy is (±2μm, ±5μm), which is less than the electrode pitch of 18μm. For the z-position, the obtained accuracy is ±2μm for distances of 5-50μm between the GM tip and the HDMEA surface. We also observed that variations in size of GM tips and HDMEA electrodes have minimal effects on the blind localization performance. This approach shows the feasibility of automated navigation of a GM atop the HDMEA to patch a single cell in vitro.","PeriodicalId":258260,"journal":{"name":"2013 IEEE SENSORS","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Factors affecting blind localization of a glass micropipette using a high-density microelectrode array\",\"authors\":\"M. Obien, A. Hierlemann, U. Frey\",\"doi\":\"10.1109/ICSENS.2013.6688361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-density microelectrode arrays (HDMEAs) provide the capability to measure extracellular electric potential from brain slices and dissociated cell cultures at high spatiotemporal resolution, which is attractive for neuroscience. Since the HDMEA enables to record the activity of single neurons at sub-cellular resolution, a combination with intracellular recording techniques, such as patch clamp, will allow for new in vitro experiments. Such combination technique requires precise localization of both the cell of interest and the glass micropipette (GM) with respect to the HDMEA. Here, we present a methodology to locate the three-dimensional (3D) position of a GM on the HDMEA without the use of an optical microscope. For the (x, y) position, the achieved accuracy is (±2μm, ±5μm), which is less than the electrode pitch of 18μm. For the z-position, the obtained accuracy is ±2μm for distances of 5-50μm between the GM tip and the HDMEA surface. We also observed that variations in size of GM tips and HDMEA electrodes have minimal effects on the blind localization performance. This approach shows the feasibility of automated navigation of a GM atop the HDMEA to patch a single cell in vitro.\",\"PeriodicalId\":258260,\"journal\":{\"name\":\"2013 IEEE SENSORS\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE SENSORS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2013.6688361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2013.6688361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

高密度微电极阵列(HDMEAs)提供了在高时空分辨率下测量脑切片和游离细胞培养物的细胞外电位的能力,这对神经科学具有吸引力。由于HDMEA能够以亚细胞分辨率记录单个神经元的活动,因此与细胞内记录技术(如膜片钳)相结合,将允许进行新的体外实验。这种组合技术需要精确定位感兴趣的细胞和玻璃微移液管(GM)相对于HDMEA。在这里,我们提出了一种方法来定位三维(3D)的位置上的一个GM在HDMEA没有使用光学显微镜。对于(x, y)位置,获得的精度为(±2μm,±5μm),小于电极间距18μm。对于z-位置,在GM尖端与HDMEA表面之间的距离为5-50μm时,得到的精度为±2μm。我们还观察到,GM尖端和HDMEA电极的尺寸变化对盲定位性能的影响很小。这种方法显示了在HDMEA上自动导航GM贴片单细胞的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Factors affecting blind localization of a glass micropipette using a high-density microelectrode array
High-density microelectrode arrays (HDMEAs) provide the capability to measure extracellular electric potential from brain slices and dissociated cell cultures at high spatiotemporal resolution, which is attractive for neuroscience. Since the HDMEA enables to record the activity of single neurons at sub-cellular resolution, a combination with intracellular recording techniques, such as patch clamp, will allow for new in vitro experiments. Such combination technique requires precise localization of both the cell of interest and the glass micropipette (GM) with respect to the HDMEA. Here, we present a methodology to locate the three-dimensional (3D) position of a GM on the HDMEA without the use of an optical microscope. For the (x, y) position, the achieved accuracy is (±2μm, ±5μm), which is less than the electrode pitch of 18μm. For the z-position, the obtained accuracy is ±2μm for distances of 5-50μm between the GM tip and the HDMEA surface. We also observed that variations in size of GM tips and HDMEA electrodes have minimal effects on the blind localization performance. This approach shows the feasibility of automated navigation of a GM atop the HDMEA to patch a single cell in vitro.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An evaluation of electric-field sensors for projectile detection Large area all-elastomer capacitive tactile arrays Thickness dependent adhesion force and its correlation to surface roughness in multilayered graphene Development of a thin-film thermocouple matrix for in-situ temperature measurement in a lithium ion pouch cell One side electrode type fluidic based capacitive pressure sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1