基于禁忌的人工鱼群算法案例检索策略

Long-qin Xu, Shuang-yin Liu
{"title":"基于禁忌的人工鱼群算法案例检索策略","authors":"Long-qin Xu, Shuang-yin Liu","doi":"10.1109/CINC.2010.5643817","DOIUrl":null,"url":null,"abstract":"In terms of some problems existing in the process of large case base retrieval, combining tabu search method and the advantages of artificial fishschool algorithm, this paper proposes multilevel search strategy based on tabu artificial fishswarm algorithm. Tabu artificial fishswarm algorithm applies tabu table with a memory function to artificial fishswarm algorithm and uses different computing model in the similarity calculation according to properties of different types, effectively to avoid premature and blind search and other issues. Simulation results show that the algorithm outperforms other algorithms, it not only improves the retrieval accuracy and retrieval efficiency of the casebased reasoning system, but also is characterized by requiring not much with the initial values and parameters, diversity search and overcoming the local maximum, better coordinate the overall and local search capabilities and provides an effective retrieval method to retrieve the case of large case base.","PeriodicalId":227004,"journal":{"name":"2010 Second International Conference on Computational Intelligence and Natural Computing","volume":"170 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Case retrieval strategies of tabu-based artificial fish swarm algorithm\",\"authors\":\"Long-qin Xu, Shuang-yin Liu\",\"doi\":\"10.1109/CINC.2010.5643817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In terms of some problems existing in the process of large case base retrieval, combining tabu search method and the advantages of artificial fishschool algorithm, this paper proposes multilevel search strategy based on tabu artificial fishswarm algorithm. Tabu artificial fishswarm algorithm applies tabu table with a memory function to artificial fishswarm algorithm and uses different computing model in the similarity calculation according to properties of different types, effectively to avoid premature and blind search and other issues. Simulation results show that the algorithm outperforms other algorithms, it not only improves the retrieval accuracy and retrieval efficiency of the casebased reasoning system, but also is characterized by requiring not much with the initial values and parameters, diversity search and overcoming the local maximum, better coordinate the overall and local search capabilities and provides an effective retrieval method to retrieve the case of large case base.\",\"PeriodicalId\":227004,\"journal\":{\"name\":\"2010 Second International Conference on Computational Intelligence and Natural Computing\",\"volume\":\"170 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Computational Intelligence and Natural Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CINC.2010.5643817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computational Intelligence and Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINC.2010.5643817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

针对大案例库检索过程中存在的一些问题,结合禁忌搜索方法和人工鱼群算法的优点,提出了基于禁忌人工鱼群算法的多级搜索策略。禁忌人工鱼群算法将带有记忆功能的禁忌表应用于人工鱼群算法中,根据不同类型的属性在相似度计算中使用不同的计算模型,有效避免了过早搜索和盲目搜索等问题。仿真结果表明,该算法优于其他算法,不仅提高了基于案例推理系统的检索精度和检索效率,而且具有对初始值和参数要求不高、多样性搜索和克服局部极大值的特点,更好地协调了整体和局部搜索能力,为检索大型案例库中的案例提供了一种有效的检索方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Case retrieval strategies of tabu-based artificial fish swarm algorithm
In terms of some problems existing in the process of large case base retrieval, combining tabu search method and the advantages of artificial fishschool algorithm, this paper proposes multilevel search strategy based on tabu artificial fishswarm algorithm. Tabu artificial fishswarm algorithm applies tabu table with a memory function to artificial fishswarm algorithm and uses different computing model in the similarity calculation according to properties of different types, effectively to avoid premature and blind search and other issues. Simulation results show that the algorithm outperforms other algorithms, it not only improves the retrieval accuracy and retrieval efficiency of the casebased reasoning system, but also is characterized by requiring not much with the initial values and parameters, diversity search and overcoming the local maximum, better coordinate the overall and local search capabilities and provides an effective retrieval method to retrieve the case of large case base.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary design of ANN structure using genetic algorithm Performance analysis of spread spectrum communication system in fading enviornment and Interference Comprehensive evaluation of forest industries based on rough sets and artificial neural network A new descent algorithm with curve search rule for unconstrained minimization A multi-agent simulation for intelligence economy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1