{"title":"利用广义偏序分析的有效验证","authors":"S. Vercauteren, D. Verkest, G. D. Jong, Bill Lin","doi":"10.1109/DATE.1998.655947","DOIUrl":null,"url":null,"abstract":"This paper presents a new formal method for the efficient verification of concurrent systems that are modeled using a safe Petri net representation. Our method generalizes upon partial-order methods to explore concurrently enabled conflicting paths simultaneously. We show that our method can achieve an exponential reduction in algorithmic complexity without resorting to an implicit enumeration approach.","PeriodicalId":179207,"journal":{"name":"Proceedings Design, Automation and Test in Europe","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Efficient verification using generalized partial order analysis\",\"authors\":\"S. Vercauteren, D. Verkest, G. D. Jong, Bill Lin\",\"doi\":\"10.1109/DATE.1998.655947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new formal method for the efficient verification of concurrent systems that are modeled using a safe Petri net representation. Our method generalizes upon partial-order methods to explore concurrently enabled conflicting paths simultaneously. We show that our method can achieve an exponential reduction in algorithmic complexity without resorting to an implicit enumeration approach.\",\"PeriodicalId\":179207,\"journal\":{\"name\":\"Proceedings Design, Automation and Test in Europe\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Design, Automation and Test in Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.1998.655947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Design, Automation and Test in Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.1998.655947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient verification using generalized partial order analysis
This paper presents a new formal method for the efficient verification of concurrent systems that are modeled using a safe Petri net representation. Our method generalizes upon partial-order methods to explore concurrently enabled conflicting paths simultaneously. We show that our method can achieve an exponential reduction in algorithmic complexity without resorting to an implicit enumeration approach.