{"title":"与心血管疾病相关的久坐行为和体力活动的数学建模及最优控制分析","authors":"L. Jibril, O. Odetunde","doi":"10.11648/J.BSI.20200504.13","DOIUrl":null,"url":null,"abstract":"Cardiovascular diseases (CVDs) have remained the leading causes of global death in the last 16 years which is the cause of mortality of 17.7 million people every year. Nowadays, people live in a time where sitting takes up the majority of their daily affairs. The sedentary behavior for prolonged periods of time can leads to a problem of deadly disease such as heart disease, obesity, and diabetes. In this paper a deterministic model for the effects of prolonged sitting is designed. The model, which consists of three ordinary differentials equations is developed and analyzed to study the optimal control analysis on sedentary behavior, physical activity in relation to cardiovascular disease (CVD) in a community. The solutions of the model uniquely exist, nonnegative for all t ≥ 0 with nonnegative initial conditions in R3+, and bounded in a region ΩN. The basic reproduction number which measures the relationship threshold is presented. The model was extended and optimal control theory was applied to examine optimal strategies for controlling or eradicating the new cases of CVD that may be borne due to a life of inactivity. The control measures comprises of education or sensitization u1, living a healthy lifestyle (good nutrition, weight management) u2, and getting plenty of physical activity u3. The impact of using possible combinations of the three intervention strategies was investigated and analyzed. The results of the optimal control model using Pontryagin maximum principle (PMP) revealed that combination of education or sensitization with any other control strategy yields better result to reduce or eradicate the risk of new cases of CVD from sedentary lifestyle.","PeriodicalId":219184,"journal":{"name":"Biomedical Statistics and Informatics","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Modeling and Optimal Control Analysis on Sedentary Behavior and Physical Activity in Relation to Cardiovascular Disease (CVD)\",\"authors\":\"L. Jibril, O. Odetunde\",\"doi\":\"10.11648/J.BSI.20200504.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardiovascular diseases (CVDs) have remained the leading causes of global death in the last 16 years which is the cause of mortality of 17.7 million people every year. Nowadays, people live in a time where sitting takes up the majority of their daily affairs. The sedentary behavior for prolonged periods of time can leads to a problem of deadly disease such as heart disease, obesity, and diabetes. In this paper a deterministic model for the effects of prolonged sitting is designed. The model, which consists of three ordinary differentials equations is developed and analyzed to study the optimal control analysis on sedentary behavior, physical activity in relation to cardiovascular disease (CVD) in a community. The solutions of the model uniquely exist, nonnegative for all t ≥ 0 with nonnegative initial conditions in R3+, and bounded in a region ΩN. The basic reproduction number which measures the relationship threshold is presented. The model was extended and optimal control theory was applied to examine optimal strategies for controlling or eradicating the new cases of CVD that may be borne due to a life of inactivity. The control measures comprises of education or sensitization u1, living a healthy lifestyle (good nutrition, weight management) u2, and getting plenty of physical activity u3. The impact of using possible combinations of the three intervention strategies was investigated and analyzed. The results of the optimal control model using Pontryagin maximum principle (PMP) revealed that combination of education or sensitization with any other control strategy yields better result to reduce or eradicate the risk of new cases of CVD from sedentary lifestyle.\",\"PeriodicalId\":219184,\"journal\":{\"name\":\"Biomedical Statistics and Informatics\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Statistics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.BSI.20200504.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Statistics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.BSI.20200504.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mathematical Modeling and Optimal Control Analysis on Sedentary Behavior and Physical Activity in Relation to Cardiovascular Disease (CVD)
Cardiovascular diseases (CVDs) have remained the leading causes of global death in the last 16 years which is the cause of mortality of 17.7 million people every year. Nowadays, people live in a time where sitting takes up the majority of their daily affairs. The sedentary behavior for prolonged periods of time can leads to a problem of deadly disease such as heart disease, obesity, and diabetes. In this paper a deterministic model for the effects of prolonged sitting is designed. The model, which consists of three ordinary differentials equations is developed and analyzed to study the optimal control analysis on sedentary behavior, physical activity in relation to cardiovascular disease (CVD) in a community. The solutions of the model uniquely exist, nonnegative for all t ≥ 0 with nonnegative initial conditions in R3+, and bounded in a region ΩN. The basic reproduction number which measures the relationship threshold is presented. The model was extended and optimal control theory was applied to examine optimal strategies for controlling or eradicating the new cases of CVD that may be borne due to a life of inactivity. The control measures comprises of education or sensitization u1, living a healthy lifestyle (good nutrition, weight management) u2, and getting plenty of physical activity u3. The impact of using possible combinations of the three intervention strategies was investigated and analyzed. The results of the optimal control model using Pontryagin maximum principle (PMP) revealed that combination of education or sensitization with any other control strategy yields better result to reduce or eradicate the risk of new cases of CVD from sedentary lifestyle.