一种新的基于遗传算法搜索的运动估计技术

C. Bussiere, D. Hatzinakos
{"title":"一种新的基于遗传算法搜索的运动估计技术","authors":"C. Bussiere, D. Hatzinakos","doi":"10.1109/SSAP.1994.572510","DOIUrl":null,"url":null,"abstract":"Traditional motion estimation (ME) techniques have relied upon the assumption that their evaluation function was sufficiently unimodal to warrant the application of simple gradient based search to find the displacement vector field or their image sequence. What we have done is to iDVF) evelop a more robust M E technique which uses Genetic Algorithms (GA) to maintain a statistically generated p o p ulation of candidate solutions’. Our ME technique works within a complex motion environment containing three dimensions of displacement and rotation and thus requires 6 degrees of freedom. These 6 degrees of freedom are implemented using a novel frequency domain image warping technique which reestablished a frame to frame correspondence and allows for the application of a correlation measure as the fitness function. T h e paper presents a discussion of the advantages of GAS for multimodal search in the context of motion estimation in a complex environment and presents a novel means of hybridizing the search so as to improve the convergence properties of the algorithm. Simulation results are used to show the performance of GAS in locating global solutions to the ME problem.","PeriodicalId":151571,"journal":{"name":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Motion Estimation Technique Using Genetic Algorithm Search\",\"authors\":\"C. Bussiere, D. Hatzinakos\",\"doi\":\"10.1109/SSAP.1994.572510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional motion estimation (ME) techniques have relied upon the assumption that their evaluation function was sufficiently unimodal to warrant the application of simple gradient based search to find the displacement vector field or their image sequence. What we have done is to iDVF) evelop a more robust M E technique which uses Genetic Algorithms (GA) to maintain a statistically generated p o p ulation of candidate solutions’. Our ME technique works within a complex motion environment containing three dimensions of displacement and rotation and thus requires 6 degrees of freedom. These 6 degrees of freedom are implemented using a novel frequency domain image warping technique which reestablished a frame to frame correspondence and allows for the application of a correlation measure as the fitness function. T h e paper presents a discussion of the advantages of GAS for multimodal search in the context of motion estimation in a complex environment and presents a novel means of hybridizing the search so as to improve the convergence properties of the algorithm. Simulation results are used to show the performance of GAS in locating global solutions to the ME problem.\",\"PeriodicalId\":151571,\"journal\":{\"name\":\"IEEE Seventh SP Workshop on Statistical Signal and Array Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Seventh SP Workshop on Statistical Signal and Array Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSAP.1994.572510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1994.572510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的运动估计(ME)技术依赖于其评估函数足够单峰的假设,以保证应用简单的基于梯度的搜索来寻找位移矢量场或其图像序列。我们所做的是开发一种更强大的M - E技术,该技术使用遗传算法(GA)来维持统计生成的候选解的p - p种群。我们的ME技术在包含三维位移和旋转的复杂运动环境中工作,因此需要6个自由度。这6个自由度是使用一种新的频域图像扭曲技术实现的,该技术重新建立了帧到帧的对应关系,并允许应用相关度量作为适应度函数。本文讨论了复杂环境下运动估计中多模态搜索算法的优点,提出了一种新的混合搜索方法,以提高算法的收敛性。仿真结果显示了该算法在ME问题全局解定位中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Motion Estimation Technique Using Genetic Algorithm Search
Traditional motion estimation (ME) techniques have relied upon the assumption that their evaluation function was sufficiently unimodal to warrant the application of simple gradient based search to find the displacement vector field or their image sequence. What we have done is to iDVF) evelop a more robust M E technique which uses Genetic Algorithms (GA) to maintain a statistically generated p o p ulation of candidate solutions’. Our ME technique works within a complex motion environment containing three dimensions of displacement and rotation and thus requires 6 degrees of freedom. These 6 degrees of freedom are implemented using a novel frequency domain image warping technique which reestablished a frame to frame correspondence and allows for the application of a correlation measure as the fitness function. T h e paper presents a discussion of the advantages of GAS for multimodal search in the context of motion estimation in a complex environment and presents a novel means of hybridizing the search so as to improve the convergence properties of the algorithm. Simulation results are used to show the performance of GAS in locating global solutions to the ME problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hopfield Network Approach to Beamforrning in Spread Spectrum Communication A Comparative Study of Statistical and Neural DOA Estimation Techniques A New Cumulant Based Phase Estimation Nonminimum-phase Systems By Allpass Study of the Couple (Reflection Coefficient, K-Nn Rule) An N-D Technique for Coherent Wave Doa Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1