{"title":"模拟探地雷达的机器学习方法","authors":"I. Giannakis, A. Giannopoulos, C. Warren","doi":"10.1109/ICGPR.2018.8441558","DOIUrl":null,"url":null,"abstract":"The ability to produce, store and analyse large amounts of well-labeled data as well as recent advancements on supervised training, led machine learning to gain a renewed popularity. In the present paper, the applicability of machine learning to simulate ground penetrating radar (GPR) for high frequency applications is examined. A well-labelled and equally distributed training set is generated synthetically using the finite-difference time-domain (FDTD) method. Special care was taken in order to model the antennas and the soils with sufficient accuracy. Through a stochastic parameterisation, each model is expressed using only seven parameters (i.e. the fractal dimension of water fraction, the height of the antenna and so on). Based on these parameters and the synthetically generated training set, a machine learning framework is trained to predict the resulting A-Scan in real-time. Thus, overcoming the time-consuming calculations required for an equivalent FDTD simulation.","PeriodicalId":269482,"journal":{"name":"2018 17th International Conference on Ground Penetrating Radar (GPR)","volume":"273 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Machine Learning Approach For Simulating Ground Penetrating Radar\",\"authors\":\"I. Giannakis, A. Giannopoulos, C. Warren\",\"doi\":\"10.1109/ICGPR.2018.8441558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to produce, store and analyse large amounts of well-labeled data as well as recent advancements on supervised training, led machine learning to gain a renewed popularity. In the present paper, the applicability of machine learning to simulate ground penetrating radar (GPR) for high frequency applications is examined. A well-labelled and equally distributed training set is generated synthetically using the finite-difference time-domain (FDTD) method. Special care was taken in order to model the antennas and the soils with sufficient accuracy. Through a stochastic parameterisation, each model is expressed using only seven parameters (i.e. the fractal dimension of water fraction, the height of the antenna and so on). Based on these parameters and the synthetically generated training set, a machine learning framework is trained to predict the resulting A-Scan in real-time. Thus, overcoming the time-consuming calculations required for an equivalent FDTD simulation.\",\"PeriodicalId\":269482,\"journal\":{\"name\":\"2018 17th International Conference on Ground Penetrating Radar (GPR)\",\"volume\":\"273 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 17th International Conference on Ground Penetrating Radar (GPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICGPR.2018.8441558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th International Conference on Ground Penetrating Radar (GPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGPR.2018.8441558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Machine Learning Approach For Simulating Ground Penetrating Radar
The ability to produce, store and analyse large amounts of well-labeled data as well as recent advancements on supervised training, led machine learning to gain a renewed popularity. In the present paper, the applicability of machine learning to simulate ground penetrating radar (GPR) for high frequency applications is examined. A well-labelled and equally distributed training set is generated synthetically using the finite-difference time-domain (FDTD) method. Special care was taken in order to model the antennas and the soils with sufficient accuracy. Through a stochastic parameterisation, each model is expressed using only seven parameters (i.e. the fractal dimension of water fraction, the height of the antenna and so on). Based on these parameters and the synthetically generated training set, a machine learning framework is trained to predict the resulting A-Scan in real-time. Thus, overcoming the time-consuming calculations required for an equivalent FDTD simulation.