大气数据可视化的有损压缩

D. Semeraro, Leigh Orf
{"title":"大气数据可视化的有损压缩","authors":"D. Semeraro, Leigh Orf","doi":"10.1109/LDAV53230.2021.00017","DOIUrl":null,"url":null,"abstract":"Lossy compression is a data compression technique that sacrifices precision for the sake of higher compression rates. While loss of precision is unacceptable when storing simulation data for check pointing, it has little discernable impact on visualization. Saving simulation output for later examination is still a prevalent workflow. Domain scientists often return to data from older runs to examine the data in a new context. Storage of visualization data at full precision is not necessary for this purpose. The use of lossy compression can therefore relieve the pressure on HPC storage equipment or be used to store data at higher temporal resolution than without compression. In this poster we show how lossy compression was used to store visualization data for the analysis of a supercell thunderstorm. The visual results will be shown as well as details of how the compression was used in the workflow.","PeriodicalId":441438,"journal":{"name":"2021 IEEE 11th Symposium on Large Data Analysis and Visualization (LDAV)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lossy Compression for Visualization of Atmospheric Data\",\"authors\":\"D. Semeraro, Leigh Orf\",\"doi\":\"10.1109/LDAV53230.2021.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lossy compression is a data compression technique that sacrifices precision for the sake of higher compression rates. While loss of precision is unacceptable when storing simulation data for check pointing, it has little discernable impact on visualization. Saving simulation output for later examination is still a prevalent workflow. Domain scientists often return to data from older runs to examine the data in a new context. Storage of visualization data at full precision is not necessary for this purpose. The use of lossy compression can therefore relieve the pressure on HPC storage equipment or be used to store data at higher temporal resolution than without compression. In this poster we show how lossy compression was used to store visualization data for the analysis of a supercell thunderstorm. The visual results will be shown as well as details of how the compression was used in the workflow.\",\"PeriodicalId\":441438,\"journal\":{\"name\":\"2021 IEEE 11th Symposium on Large Data Analysis and Visualization (LDAV)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 11th Symposium on Large Data Analysis and Visualization (LDAV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LDAV53230.2021.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 11th Symposium on Large Data Analysis and Visualization (LDAV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LDAV53230.2021.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

有损压缩是一种为了获得更高的压缩率而牺牲精度的数据压缩技术。当为检查点存储模拟数据时,精度损失是不可接受的,它对可视化几乎没有明显的影响。保存模拟输出以供以后检查仍然是一个流行的工作流程。领域科学家经常返回到旧运行的数据,以在新的环境中检查数据。为了达到这个目的,完全精确地存储可视化数据是不必要的。因此,使用有损压缩可以减轻HPC存储设备的压力,或者用于以比不压缩更高的时间分辨率存储数据。在这张海报中,我们展示了如何使用有损压缩来存储用于分析超级单体雷暴的可视化数据。将显示可视化结果以及如何在工作流中使用压缩的细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lossy Compression for Visualization of Atmospheric Data
Lossy compression is a data compression technique that sacrifices precision for the sake of higher compression rates. While loss of precision is unacceptable when storing simulation data for check pointing, it has little discernable impact on visualization. Saving simulation output for later examination is still a prevalent workflow. Domain scientists often return to data from older runs to examine the data in a new context. Storage of visualization data at full precision is not necessary for this purpose. The use of lossy compression can therefore relieve the pressure on HPC storage equipment or be used to store data at higher temporal resolution than without compression. In this poster we show how lossy compression was used to store visualization data for the analysis of a supercell thunderstorm. The visual results will be shown as well as details of how the compression was used in the workflow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IExchange: Asynchronous Communication and Termination Detection for Iterative Algorithms Parameter Analysis and Contrail Detection of Aircraft Engine Simulations An Entropy-Based Approach for Identifying User-Preferred Camera Positions Portable and Composable Flow Graphs for In Situ Analytics Lossy Compression for Visualization of Atmospheric Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1