{"title":"无冗余视图的弱监督自然语言学习","authors":"Vincent Ng, Claire Cardie","doi":"10.3115/1073445.1073468","DOIUrl":null,"url":null,"abstract":"We investigate single-view algorithms as an alternative to multi-view algorithms for weakly supervised learning for natural language processing tasks without a natural feature split. In particular, we apply co-training, self-training, and EM to one such task and find that both self-training and FS-EM, a new variation of EM that incorporates feature selection, outperform co-training and are comparatively less sensitive to parameter changes.","PeriodicalId":277518,"journal":{"name":"Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - NAACL '03","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"140","resultStr":"{\"title\":\"Weakly Supervised Natural Language Learning Without Redundant Views\",\"authors\":\"Vincent Ng, Claire Cardie\",\"doi\":\"10.3115/1073445.1073468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate single-view algorithms as an alternative to multi-view algorithms for weakly supervised learning for natural language processing tasks without a natural feature split. In particular, we apply co-training, self-training, and EM to one such task and find that both self-training and FS-EM, a new variation of EM that incorporates feature selection, outperform co-training and are comparatively less sensitive to parameter changes.\",\"PeriodicalId\":277518,\"journal\":{\"name\":\"Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - NAACL '03\",\"volume\":\"172 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"140\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - NAACL '03\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1073445.1073468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - NAACL '03","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1073445.1073468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 140

摘要

我们研究了单视图算法作为无自然特征分割的自然语言处理任务弱监督学习的多视图算法的替代方案。特别是,我们将共同训练、自我训练和EM应用于这样一个任务,并发现自我训练和FS-EM (EM的一种新变体,包含特征选择)都优于共同训练,并且对参数变化相对不那么敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weakly Supervised Natural Language Learning Without Redundant Views
We investigate single-view algorithms as an alternative to multi-view algorithms for weakly supervised learning for natural language processing tasks without a natural feature split. In particular, we apply co-training, self-training, and EM to one such task and find that both self-training and FS-EM, a new variation of EM that incorporates feature selection, outperform co-training and are comparatively less sensitive to parameter changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Weakly Supervised Natural Language Learning Without Redundant Views Minimally Supervised Induction of Grammatical Gender Inducing History Representations for Broad Coverage Statistical Parsing Statistical Sentence Condensation using Ambiguity Packing and Stochastic Disambiguation Methods for Lexical-Functional Grammar A Weighted Finite State Transducer Implementation of the Alignment Template Model for Statistical Machine Translation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1