R. Andriambololona, Ravo Tokiniaina Ranaivoson, Hanitriarivo Rakotoson
{"title":"线性正则变换的涡旋表示研究","authors":"R. Andriambololona, Ravo Tokiniaina Ranaivoson, Hanitriarivo Rakotoson","doi":"10.11648/J.IJAMTP.20190503.12","DOIUrl":null,"url":null,"abstract":"This work is a continuation of our previous works concerning linear canonical transformations and phase space representation of quantum theory. It is mainly focused on the description of an approach which allows to establish spinorial representation of linear canonical transformations. This description is started with the presentation of a suitable parameterization of linear canonical transformations which permits to represent them with special pseudo-orthogonal transformations in an operator space. Then the establishment of the spinorial representation is deduced using the well-known relation existing between special pseudo-orthogonal and spin groups. The cases of one dimension and general multidimensional theory are both studied.","PeriodicalId":367229,"journal":{"name":"International Journal of Applied Mathematics and Theoretical Physics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Study on a Spinorial Representation of Linear Canonical Transformation\",\"authors\":\"R. Andriambololona, Ravo Tokiniaina Ranaivoson, Hanitriarivo Rakotoson\",\"doi\":\"10.11648/J.IJAMTP.20190503.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is a continuation of our previous works concerning linear canonical transformations and phase space representation of quantum theory. It is mainly focused on the description of an approach which allows to establish spinorial representation of linear canonical transformations. This description is started with the presentation of a suitable parameterization of linear canonical transformations which permits to represent them with special pseudo-orthogonal transformations in an operator space. Then the establishment of the spinorial representation is deduced using the well-known relation existing between special pseudo-orthogonal and spin groups. The cases of one dimension and general multidimensional theory are both studied.\",\"PeriodicalId\":367229,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Theoretical Physics\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Theoretical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.IJAMTP.20190503.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJAMTP.20190503.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study on a Spinorial Representation of Linear Canonical Transformation
This work is a continuation of our previous works concerning linear canonical transformations and phase space representation of quantum theory. It is mainly focused on the description of an approach which allows to establish spinorial representation of linear canonical transformations. This description is started with the presentation of a suitable parameterization of linear canonical transformations which permits to represent them with special pseudo-orthogonal transformations in an operator space. Then the establishment of the spinorial representation is deduced using the well-known relation existing between special pseudo-orthogonal and spin groups. The cases of one dimension and general multidimensional theory are both studied.