通过处理皮肤镜图像自动检测皮肤癌(黑色素瘤)

Hadi Moazen, M. Jamzad
{"title":"通过处理皮肤镜图像自动检测皮肤癌(黑色素瘤)","authors":"Hadi Moazen, M. Jamzad","doi":"10.1109/MVIP49855.2020.9116918","DOIUrl":null,"url":null,"abstract":"Melanoma is the deadliest form of skin cancer if not treated early. The best way to cure melanoma is to treat it in its earliest stage of development. Since melanoma is similar to benign moles in its shape and appearance, it is often mistaken for moles and left untreated. Automatic melanoma detection is an essential way to increase the survival rate of patients by detecting melanoma in its early stages. In this paper, a new method for automatic diagnosis of melanoma using segmented dermatoscopic images is provided. Almost all related methods follow similar approaches but using different features. We have introduced several new features which could improve the accuracy of diagnosing melanoma. For evaluation we have implemented and tested all methods on the ISIC archive, which is the largest openly available dataset of dermatoscopic melanoma images. Our method outperforms most recent previous works’ accuracy on the ISIC dataset by 1.5 percent. It also achieves a 2.32-point higher F1 score while obtaining a comparable sensitivity.","PeriodicalId":255375,"journal":{"name":"2020 International Conference on Machine Vision and Image Processing (MVIP)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Automatic Skin Cancer (Melanoma) Detection by Processing Dermatoscopic images\",\"authors\":\"Hadi Moazen, M. Jamzad\",\"doi\":\"10.1109/MVIP49855.2020.9116918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Melanoma is the deadliest form of skin cancer if not treated early. The best way to cure melanoma is to treat it in its earliest stage of development. Since melanoma is similar to benign moles in its shape and appearance, it is often mistaken for moles and left untreated. Automatic melanoma detection is an essential way to increase the survival rate of patients by detecting melanoma in its early stages. In this paper, a new method for automatic diagnosis of melanoma using segmented dermatoscopic images is provided. Almost all related methods follow similar approaches but using different features. We have introduced several new features which could improve the accuracy of diagnosing melanoma. For evaluation we have implemented and tested all methods on the ISIC archive, which is the largest openly available dataset of dermatoscopic melanoma images. Our method outperforms most recent previous works’ accuracy on the ISIC dataset by 1.5 percent. It also achieves a 2.32-point higher F1 score while obtaining a comparable sensitivity.\",\"PeriodicalId\":255375,\"journal\":{\"name\":\"2020 International Conference on Machine Vision and Image Processing (MVIP)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Machine Vision and Image Processing (MVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MVIP49855.2020.9116918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MVIP49855.2020.9116918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

如果不及早治疗,黑色素瘤是最致命的皮肤癌。治疗黑色素瘤的最好方法是在其发展的早期阶段进行治疗。由于黑色素瘤在形状和外观上与良性痣相似,因此经常被误认为是痣而不进行治疗。黑色素瘤的自动检测是提高患者生存率的重要途径,可以在黑色素瘤的早期阶段进行检测。本文提出了一种基于皮肤镜图像分割的黑色素瘤自动诊断方法。几乎所有相关的方法都遵循类似的方法,但使用了不同的功能。我们引入了一些新的特征,可以提高诊断黑色素瘤的准确性。为了评估,我们在ISIC档案上实施并测试了所有方法,这是最大的公开可用的皮肤镜下黑色素瘤图像数据集。我们的方法比以前在ISIC数据集上的最新作品的准确性高出1.5%。它还实现了2.32分更高的F1得分,同时获得相当的灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Skin Cancer (Melanoma) Detection by Processing Dermatoscopic images
Melanoma is the deadliest form of skin cancer if not treated early. The best way to cure melanoma is to treat it in its earliest stage of development. Since melanoma is similar to benign moles in its shape and appearance, it is often mistaken for moles and left untreated. Automatic melanoma detection is an essential way to increase the survival rate of patients by detecting melanoma in its early stages. In this paper, a new method for automatic diagnosis of melanoma using segmented dermatoscopic images is provided. Almost all related methods follow similar approaches but using different features. We have introduced several new features which could improve the accuracy of diagnosing melanoma. For evaluation we have implemented and tested all methods on the ISIC archive, which is the largest openly available dataset of dermatoscopic melanoma images. Our method outperforms most recent previous works’ accuracy on the ISIC dataset by 1.5 percent. It also achieves a 2.32-point higher F1 score while obtaining a comparable sensitivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Offline Handwritten Signature Verification and Recognition Based on Deep Transfer Learning A High-Accuracy, Cost-Effective People Counting Solution Based on Visual Depth Data Source Camera Identification Using WLBP Descriptor Convolutional Neural Network for Building Extraction from High-Resolution Remote Sensing Images PCB Defect Detection Using Denoising Convolutional Autoencoders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1