不规则地形上的信道预测:带有随机森林的深度自编码器

Yuyang Wang, Shiva R. Iyer, D. Chizhik, Jinfeng Du, R. Valenzuela
{"title":"不规则地形上的信道预测:带有随机森林的深度自编码器","authors":"Yuyang Wang, Shiva R. Iyer, D. Chizhik, Jinfeng Du, R. Valenzuela","doi":"10.1109/spawc51304.2022.9833965","DOIUrl":null,"url":null,"abstract":"Channel modeling is critical for coverage prediction, system level simulations, and wireless propagation characterization. Industry practice applies linear fit to the pathloss in decibels against the logarithm of the distance. Simple linear fit, however, cannot fully capture the shadowing effects in the channel, especially for a link with rich scatterings such as non-line-of-sight (NLOS) links in a complex propagation environment. In this paper, we propose an interpretable hybrid learning model with expert knowledge to predict the channel pathloss in desert-like environment using terrain profiles. We apply an autoencoder to extract compressed information from terrain profiles. The compressed representation of terrain, combined with features selected based on expert knowledge such as LOS/NLOS indicator and curvature of the terrain, are used to predict the pathloss. We show that a Random Forest regression model outperforms CNN/DNN models in generalizability of predicting unseen data by training and testing in disjoint sectors of the measured areas.","PeriodicalId":423807,"journal":{"name":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Channel Prediction over Irregular Terrains: Deep Autoencoder with Random Forest\",\"authors\":\"Yuyang Wang, Shiva R. Iyer, D. Chizhik, Jinfeng Du, R. Valenzuela\",\"doi\":\"10.1109/spawc51304.2022.9833965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Channel modeling is critical for coverage prediction, system level simulations, and wireless propagation characterization. Industry practice applies linear fit to the pathloss in decibels against the logarithm of the distance. Simple linear fit, however, cannot fully capture the shadowing effects in the channel, especially for a link with rich scatterings such as non-line-of-sight (NLOS) links in a complex propagation environment. In this paper, we propose an interpretable hybrid learning model with expert knowledge to predict the channel pathloss in desert-like environment using terrain profiles. We apply an autoencoder to extract compressed information from terrain profiles. The compressed representation of terrain, combined with features selected based on expert knowledge such as LOS/NLOS indicator and curvature of the terrain, are used to predict the pathloss. We show that a Random Forest regression model outperforms CNN/DNN models in generalizability of predicting unseen data by training and testing in disjoint sectors of the measured areas.\",\"PeriodicalId\":423807,\"journal\":{\"name\":\"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/spawc51304.2022.9833965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/spawc51304.2022.9833965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

信道建模对于覆盖预测、系统级仿真和无线传播特性是至关重要的。工业实践采用线性拟合的路径损失分贝对距离的对数。然而,简单的线性拟合并不能完全捕捉信道中的阴影效应,特别是对于复杂传播环境中具有丰富散射的链路,如非视距(NLOS)链路。在本文中,我们提出了一个具有专家知识的可解释混合学习模型,用于利用地形剖面预测沙漠环境下的通道路径损失。我们采用自编码器从地形剖面中提取压缩信息。利用地形的压缩表示,结合基于专家知识选择的特征(如LOS/NLOS指标和地形曲率)来预测路径损失。通过在测量区域的不相交部分进行训练和测试,我们证明随机森林回归模型在预测未见数据的泛化性方面优于CNN/DNN模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Channel Prediction over Irregular Terrains: Deep Autoencoder with Random Forest
Channel modeling is critical for coverage prediction, system level simulations, and wireless propagation characterization. Industry practice applies linear fit to the pathloss in decibels against the logarithm of the distance. Simple linear fit, however, cannot fully capture the shadowing effects in the channel, especially for a link with rich scatterings such as non-line-of-sight (NLOS) links in a complex propagation environment. In this paper, we propose an interpretable hybrid learning model with expert knowledge to predict the channel pathloss in desert-like environment using terrain profiles. We apply an autoencoder to extract compressed information from terrain profiles. The compressed representation of terrain, combined with features selected based on expert knowledge such as LOS/NLOS indicator and curvature of the terrain, are used to predict the pathloss. We show that a Random Forest regression model outperforms CNN/DNN models in generalizability of predicting unseen data by training and testing in disjoint sectors of the measured areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Multi-Antenna Coded Caching Deep Transfer Learning Based Radio Map Estimation for Indoor Wireless Communications A New Outage Probability Bound for IR-HARQ and Its Application to Power Adaptation SPAWC 2022 Cover Page A Sequential Experience-driven Contextual Bandit Policy for MIMO TWAF Online Relay Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1