基于核方法的分层支持向量机网络故障诊断

Li Zhang, Xiangru Meng, Hua Zhou
{"title":"基于核方法的分层支持向量机网络故障诊断","authors":"Li Zhang, Xiangru Meng, Hua Zhou","doi":"10.1109/WKDD.2009.79","DOIUrl":null,"url":null,"abstract":"A new method based on kernel which can measure class separability in feature space is proposed in this paper for existing error accumulation when the Hierarchical SVMs is used to diagnose multi-class network fault. This method has defined metrics of sample distribution in feature space, which are used as the rule of constructing Hierarchical SVMs. Experiment results show that this method can restrain error accumulation and has higher multi-class classification accuracy, and offer an effective way for Network fault diagnosis.","PeriodicalId":143250,"journal":{"name":"2009 Second International Workshop on Knowledge Discovery and Data Mining","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Network Fault Diagnosis Using Hierarchical SVMs Based on Kernel Method\",\"authors\":\"Li Zhang, Xiangru Meng, Hua Zhou\",\"doi\":\"10.1109/WKDD.2009.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method based on kernel which can measure class separability in feature space is proposed in this paper for existing error accumulation when the Hierarchical SVMs is used to diagnose multi-class network fault. This method has defined metrics of sample distribution in feature space, which are used as the rule of constructing Hierarchical SVMs. Experiment results show that this method can restrain error accumulation and has higher multi-class classification accuracy, and offer an effective way for Network fault diagnosis.\",\"PeriodicalId\":143250,\"journal\":{\"name\":\"2009 Second International Workshop on Knowledge Discovery and Data Mining\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Second International Workshop on Knowledge Discovery and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WKDD.2009.79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Workshop on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WKDD.2009.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

针对分层支持向量机诊断多类网络故障时存在的误差积累问题,提出了一种基于核的特征空间类可分性度量方法。该方法定义了样本在特征空间中的分布度量,并将其作为构造分层支持向量机的规则。实验结果表明,该方法能够抑制误差积累,具有较高的多类分类精度,为网络故障诊断提供了一种有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Network Fault Diagnosis Using Hierarchical SVMs Based on Kernel Method
A new method based on kernel which can measure class separability in feature space is proposed in this paper for existing error accumulation when the Hierarchical SVMs is used to diagnose multi-class network fault. This method has defined metrics of sample distribution in feature space, which are used as the rule of constructing Hierarchical SVMs. Experiment results show that this method can restrain error accumulation and has higher multi-class classification accuracy, and offer an effective way for Network fault diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Blind Watermarking Scheme in Contourlet Domain Based on Singular Value Decomposition Research on the Electric Power Enterprise Performance Evaluation Based on Symbiosis Theory Structured Topology for Trust in P2P Network Prediction by Integration of Phase Space Reconstruction and a Novel Evolutionary System under Deregulated Power Market Weak Signal Detection Based on Chaotic Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1