{"title":"脉冲压力载荷下全夹紧复合材料层合板的主动振动控制","authors":"H. Uyanık","doi":"10.1109/RAST.2009.5158190","DOIUrl":null,"url":null,"abstract":"In this numerical study vibrations of a fully clamped composite plate subjected to impulsive pressure loadings are controlled by using piezoelectric patches. Finite element methods are preferred for numerical solutions. For obtaining finite element model of the smart plate structure, semiloof shell finite element including piezoelectric effects is used. Mode summation method is used for reducing the degrees of freedom of the finite element model and state-space equations are obtained from the reduced finite element model for determining appropriate control strategies. Optimal linear quadratic regulator (LQR) approach has been used to determine the feedback gain matrix and vibrations of the plate suppressed successfully.","PeriodicalId":412236,"journal":{"name":"2009 4th International Conference on Recent Advances in Space Technologies","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Active vibration control of a fully clamped laminated composite plate subjected to impulsive pressure loadings\",\"authors\":\"H. Uyanık\",\"doi\":\"10.1109/RAST.2009.5158190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this numerical study vibrations of a fully clamped composite plate subjected to impulsive pressure loadings are controlled by using piezoelectric patches. Finite element methods are preferred for numerical solutions. For obtaining finite element model of the smart plate structure, semiloof shell finite element including piezoelectric effects is used. Mode summation method is used for reducing the degrees of freedom of the finite element model and state-space equations are obtained from the reduced finite element model for determining appropriate control strategies. Optimal linear quadratic regulator (LQR) approach has been used to determine the feedback gain matrix and vibrations of the plate suppressed successfully.\",\"PeriodicalId\":412236,\"journal\":{\"name\":\"2009 4th International Conference on Recent Advances in Space Technologies\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 4th International Conference on Recent Advances in Space Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAST.2009.5158190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 4th International Conference on Recent Advances in Space Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAST.2009.5158190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Active vibration control of a fully clamped laminated composite plate subjected to impulsive pressure loadings
In this numerical study vibrations of a fully clamped composite plate subjected to impulsive pressure loadings are controlled by using piezoelectric patches. Finite element methods are preferred for numerical solutions. For obtaining finite element model of the smart plate structure, semiloof shell finite element including piezoelectric effects is used. Mode summation method is used for reducing the degrees of freedom of the finite element model and state-space equations are obtained from the reduced finite element model for determining appropriate control strategies. Optimal linear quadratic regulator (LQR) approach has been used to determine the feedback gain matrix and vibrations of the plate suppressed successfully.