数据并行任务的功率约束性能调度

E. Anger, Jeremiah J. Wilke, S. Yalamanchili
{"title":"数据并行任务的功率约束性能调度","authors":"E. Anger, Jeremiah J. Wilke, S. Yalamanchili","doi":"10.1109/E2SC.2016.11","DOIUrl":null,"url":null,"abstract":"This paper explores the potential benefits to asynchronous task-based execution to achieve high performance under a power cap. Task-graph schedulers can flexibly reorder tasks and assign compute resources to data-parallel (elastic) tasks to minimize execution time, compared to executing step-by-step (bulk-synchronously). The efficient utilization of the available cores becomes a challenging task when a power cap is imposed. This work characterizes the trade-offs between power and performance as a Pareto frontier, identifying the set of configurations that achieve the best performance for a given amount of power. We present a set of scheduling heuristics that leverage this information dynamically during execution to ensure that the processing cores are used efficiently when running under a power cap. This work examines the behavior of three HPC applications on a 57 core Intel Xeon Phi device, demonstrating a significant performance increase over the baseline.","PeriodicalId":424743,"journal":{"name":"2016 4th International Workshop on Energy Efficient Supercomputing (E2SC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Power-Constrained Performance Scheduling of Data Parallel Tasks\",\"authors\":\"E. Anger, Jeremiah J. Wilke, S. Yalamanchili\",\"doi\":\"10.1109/E2SC.2016.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the potential benefits to asynchronous task-based execution to achieve high performance under a power cap. Task-graph schedulers can flexibly reorder tasks and assign compute resources to data-parallel (elastic) tasks to minimize execution time, compared to executing step-by-step (bulk-synchronously). The efficient utilization of the available cores becomes a challenging task when a power cap is imposed. This work characterizes the trade-offs between power and performance as a Pareto frontier, identifying the set of configurations that achieve the best performance for a given amount of power. We present a set of scheduling heuristics that leverage this information dynamically during execution to ensure that the processing cores are used efficiently when running under a power cap. This work examines the behavior of three HPC applications on a 57 core Intel Xeon Phi device, demonstrating a significant performance increase over the baseline.\",\"PeriodicalId\":424743,\"journal\":{\"name\":\"2016 4th International Workshop on Energy Efficient Supercomputing (E2SC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 4th International Workshop on Energy Efficient Supercomputing (E2SC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/E2SC.2016.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th International Workshop on Energy Efficient Supercomputing (E2SC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/E2SC.2016.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文探讨了基于异步任务的执行在功率上限下实现高性能的潜在好处。与分步执行(批量同步)相比,任务图调度器可以灵活地重新排序任务并将计算资源分配给数据并行(弹性)任务,以最大限度地减少执行时间。当施加功率上限时,有效利用可用内核成为一项具有挑战性的任务。这项工作将功率和性能之间的权衡描述为帕累托边界,确定在给定功率的情况下实现最佳性能的配置集。我们提出了一组调度启发式方法,在执行过程中动态地利用这些信息,以确保在功率上限下运行时有效地使用处理核心。这项工作检查了57核Intel Xeon Phi设备上三个HPC应用程序的行为,显示了在基线上的显着性能提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power-Constrained Performance Scheduling of Data Parallel Tasks
This paper explores the potential benefits to asynchronous task-based execution to achieve high performance under a power cap. Task-graph schedulers can flexibly reorder tasks and assign compute resources to data-parallel (elastic) tasks to minimize execution time, compared to executing step-by-step (bulk-synchronously). The efficient utilization of the available cores becomes a challenging task when a power cap is imposed. This work characterizes the trade-offs between power and performance as a Pareto frontier, identifying the set of configurations that achieve the best performance for a given amount of power. We present a set of scheduling heuristics that leverage this information dynamically during execution to ensure that the processing cores are used efficiently when running under a power cap. This work examines the behavior of three HPC applications on a 57 core Intel Xeon Phi device, demonstrating a significant performance increase over the baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preliminary Investigation of Mobile System Features Potentially Relevant to HPC Neural Network-Based Task Scheduling with Preemptive Fan Control Characterizing Power and Performance of GPU Memory Access Power-Constrained Performance Scheduling of Data Parallel Tasks A Unified Platform for Exploring Power Management Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1