基于数学形态学的准二维球床重力驱动卸料实验研究

Yujia Liu, Sifan Peng, N. Gui, Xingtuan Yang, J. Tu, Shengyao Jiang
{"title":"基于数学形态学的准二维球床重力驱动卸料实验研究","authors":"Yujia Liu, Sifan Peng, N. Gui, Xingtuan Yang, J. Tu, Shengyao Jiang","doi":"10.1115/icone2020-16367","DOIUrl":null,"url":null,"abstract":"\n The pebbles flow is a fundamental issue for both academic investigation and engineering application in reactor core design and safety analysis. In general, experimental methods including spiral X-ray tomography and refractive index matched scanning technique (RIMS) are applied to obtain the identification of particles’ positions within a three-dimensional pebble bed. However, none of the above methods can perform global bed particles’ position identification in a dynamically discharging pebble bed, and the corresponding experimental equipment is difficult to access due to the complication and high expense.\n In this research, the experimental study is conducted to observe the gravity driven discharging process in the quasi two-dimensional silos by making use of the high-speed camera and the uniform backlight. A mathematical morphology-based method is applied to the pre-processing of the captured results. After being increased the gray value gradient by the threshold segmentation, the edges of the particles are identified and smoothed by the Sobel algorithm and the morphological opening operation. The particle centroid coordinates are identified according to the Hough circle transformation of the edges. For the whole pebble bed, the self-programmed process has a particle recognition accuracy of more than 99% and a particle centroid position deviation of less than 3%, which can accurately obtain the physical positions of all particles in the entire dynamically discharge process. By analyzing the position evolution of individual particles in consecutive images, velocity field and motion events of particles are observed. The discharging profiles of 5 conditions with different exit are analyzed in this experiment. The results make a contribution to improving the understanding of the mechanism of pebbles flow in nuclear engineering.","PeriodicalId":414088,"journal":{"name":"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study on Gravity Driven Discharging of Quasi-Two-Dimensional Pebble Bed Based on Mathematical Morphology\",\"authors\":\"Yujia Liu, Sifan Peng, N. Gui, Xingtuan Yang, J. Tu, Shengyao Jiang\",\"doi\":\"10.1115/icone2020-16367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The pebbles flow is a fundamental issue for both academic investigation and engineering application in reactor core design and safety analysis. In general, experimental methods including spiral X-ray tomography and refractive index matched scanning technique (RIMS) are applied to obtain the identification of particles’ positions within a three-dimensional pebble bed. However, none of the above methods can perform global bed particles’ position identification in a dynamically discharging pebble bed, and the corresponding experimental equipment is difficult to access due to the complication and high expense.\\n In this research, the experimental study is conducted to observe the gravity driven discharging process in the quasi two-dimensional silos by making use of the high-speed camera and the uniform backlight. A mathematical morphology-based method is applied to the pre-processing of the captured results. After being increased the gray value gradient by the threshold segmentation, the edges of the particles are identified and smoothed by the Sobel algorithm and the morphological opening operation. The particle centroid coordinates are identified according to the Hough circle transformation of the edges. For the whole pebble bed, the self-programmed process has a particle recognition accuracy of more than 99% and a particle centroid position deviation of less than 3%, which can accurately obtain the physical positions of all particles in the entire dynamically discharge process. By analyzing the position evolution of individual particles in consecutive images, velocity field and motion events of particles are observed. The discharging profiles of 5 conditions with different exit are analyzed in this experiment. The results make a contribution to improving the understanding of the mechanism of pebbles flow in nuclear engineering.\",\"PeriodicalId\":414088,\"journal\":{\"name\":\"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/icone2020-16367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone2020-16367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在堆芯设计和安全性分析中,卵石流动是一个理论研究和工程应用的基本问题。通常采用螺旋x射线层析成像和折射率匹配扫描技术(RIMS)等实验方法来获得三维球床内粒子的位置识别。然而,上述方法均无法实现动态卸料球床中颗粒的全局位置识别,且实验设备复杂且费用高,难以获得相应的实验设备。本研究利用高速摄像机和均匀背光,对准二维筒仓内重力驱动的放料过程进行了实验研究。采用基于数学形态学的方法对捕获结果进行预处理。通过阈值分割增加灰度值梯度后,利用Sobel算法和形态学打开操作对颗粒边缘进行识别和平滑。根据边缘的霍夫圆变换确定质心坐标。对于整个球床,自编程过程的颗粒识别精度大于99%,颗粒质心位置偏差小于3%,能够准确获取整个动态卸料过程中所有颗粒的物理位置。通过分析连续图像中单个粒子的位置演化,观察到粒子的速度场和运动事件。本实验分析了5种不同出口条件下的出料分布。研究结果有助于提高对核工程中卵石流动机理的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Study on Gravity Driven Discharging of Quasi-Two-Dimensional Pebble Bed Based on Mathematical Morphology
The pebbles flow is a fundamental issue for both academic investigation and engineering application in reactor core design and safety analysis. In general, experimental methods including spiral X-ray tomography and refractive index matched scanning technique (RIMS) are applied to obtain the identification of particles’ positions within a three-dimensional pebble bed. However, none of the above methods can perform global bed particles’ position identification in a dynamically discharging pebble bed, and the corresponding experimental equipment is difficult to access due to the complication and high expense. In this research, the experimental study is conducted to observe the gravity driven discharging process in the quasi two-dimensional silos by making use of the high-speed camera and the uniform backlight. A mathematical morphology-based method is applied to the pre-processing of the captured results. After being increased the gray value gradient by the threshold segmentation, the edges of the particles are identified and smoothed by the Sobel algorithm and the morphological opening operation. The particle centroid coordinates are identified according to the Hough circle transformation of the edges. For the whole pebble bed, the self-programmed process has a particle recognition accuracy of more than 99% and a particle centroid position deviation of less than 3%, which can accurately obtain the physical positions of all particles in the entire dynamically discharge process. By analyzing the position evolution of individual particles in consecutive images, velocity field and motion events of particles are observed. The discharging profiles of 5 conditions with different exit are analyzed in this experiment. The results make a contribution to improving the understanding of the mechanism of pebbles flow in nuclear engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparative Study of Constrained and Unconstrained Melting Inside a Sphere Study on Seismic Isolation and Hi-Frequency Vibration Isolation Technology for Equipment in Nuclear Power Plant Using Aero Floating Technique Experimental Study of the Processes of Gas-Steam Pressurizer Insurge Transients Study on Scattering Correction of the 60Co Gantry-Movable Dual-Projection Digital Radiography Inspection System An Experimental Study of Two-Phase Flow in a Tight Lattice Using Wire-Mesh Sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1