蒙特卡罗定位算法用于室内低功耗蓝牙设备的定位

Xiaoyue Hou, T. Arslan
{"title":"蒙特卡罗定位算法用于室内低功耗蓝牙设备的定位","authors":"Xiaoyue Hou, T. Arslan","doi":"10.1109/ICL-GNSS.2017.8376248","DOIUrl":null,"url":null,"abstract":"This paper presents a technique for indoor localization using the Monte Carlo localization (MCL) algorithm. The MCL was upgraded from Markov localization, with both belonging to the family of probabilistic approaches. Throughout the last decade, laser rangefinders and gyroscopes have been applied to MCL-based robotic localization systems with remarkable success. However, the utilization of MCL-based indoor localization for mobile devices, by applying Bluetooth low energy (BLE) sensors, is still being researched. In this paper, we present a technique that utilizes MCL that exploits two sensors, namely, the accelerometer and compass, with commonly deployed BLE beacons to localize people with mobile devices indoors. Experimental results illustrate that, by applying MCL with BLE beacons using an accelerometer and compass, the error of the calculated coordinates for the user position is less than 1 m in line of-sight (LOS) environments, while in a complex non-LOS environment, the average error is 3 m. Meanwhile, the proposed MCL system does not demand a high deployment density of BLE beacons compared with triangulation and trilateration-based indoor positioning algorithms.","PeriodicalId":330366,"journal":{"name":"2017 International Conference on Localization and GNSS (ICL-GNSS)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Monte Carlo localization algorithm for indoor positioning using Bluetooth low energy devices\",\"authors\":\"Xiaoyue Hou, T. Arslan\",\"doi\":\"10.1109/ICL-GNSS.2017.8376248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a technique for indoor localization using the Monte Carlo localization (MCL) algorithm. The MCL was upgraded from Markov localization, with both belonging to the family of probabilistic approaches. Throughout the last decade, laser rangefinders and gyroscopes have been applied to MCL-based robotic localization systems with remarkable success. However, the utilization of MCL-based indoor localization for mobile devices, by applying Bluetooth low energy (BLE) sensors, is still being researched. In this paper, we present a technique that utilizes MCL that exploits two sensors, namely, the accelerometer and compass, with commonly deployed BLE beacons to localize people with mobile devices indoors. Experimental results illustrate that, by applying MCL with BLE beacons using an accelerometer and compass, the error of the calculated coordinates for the user position is less than 1 m in line of-sight (LOS) environments, while in a complex non-LOS environment, the average error is 3 m. Meanwhile, the proposed MCL system does not demand a high deployment density of BLE beacons compared with triangulation and trilateration-based indoor positioning algorithms.\",\"PeriodicalId\":330366,\"journal\":{\"name\":\"2017 International Conference on Localization and GNSS (ICL-GNSS)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Localization and GNSS (ICL-GNSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICL-GNSS.2017.8376248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Localization and GNSS (ICL-GNSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICL-GNSS.2017.8376248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

本文提出了一种基于蒙特卡罗定位算法的室内定位技术。MCL是由马尔可夫定位方法升级而来,两者都属于概率方法族。在过去的十年中,激光测距仪和陀螺仪已经应用于基于mcl的机器人定位系统,取得了显著的成功。然而,通过应用蓝牙低功耗(BLE)传感器,将基于mcl的室内定位应用于移动设备仍处于研究阶段。在本文中,我们提出了一种利用MCL的技术,该技术利用两个传感器,即加速度计和指南针,以及通常部署的BLE信标来定位室内使用移动设备的人。实验结果表明,利用加速度计和罗经将MCL与BLE信标结合使用,在视线环境下计算出的用户位置坐标误差小于1 m,而在复杂的非视线环境下,平均误差为3 m。同时,与基于三角和三边的室内定位算法相比,所提出的MCL系统对BLE信标的部署密度要求不高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monte Carlo localization algorithm for indoor positioning using Bluetooth low energy devices
This paper presents a technique for indoor localization using the Monte Carlo localization (MCL) algorithm. The MCL was upgraded from Markov localization, with both belonging to the family of probabilistic approaches. Throughout the last decade, laser rangefinders and gyroscopes have been applied to MCL-based robotic localization systems with remarkable success. However, the utilization of MCL-based indoor localization for mobile devices, by applying Bluetooth low energy (BLE) sensors, is still being researched. In this paper, we present a technique that utilizes MCL that exploits two sensors, namely, the accelerometer and compass, with commonly deployed BLE beacons to localize people with mobile devices indoors. Experimental results illustrate that, by applying MCL with BLE beacons using an accelerometer and compass, the error of the calculated coordinates for the user position is less than 1 m in line of-sight (LOS) environments, while in a complex non-LOS environment, the average error is 3 m. Meanwhile, the proposed MCL system does not demand a high deployment density of BLE beacons compared with triangulation and trilateration-based indoor positioning algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization of anchor nodes' usage for location verification systems Optimizing matched filters for GNSS receivers Trading-off location accuracy and service quality: Privacy concerns and user profiles Dealing with network changes in cellular fingerprint positioning systems High definition map-based vehicle localization for highly automated driving: Geometric analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1