无人机终端能量管理的实时在线轨迹规划与制导

Xiaoyong Mao, Baoguo Yu, Yingjing Shi, Rui Li
{"title":"无人机终端能量管理的实时在线轨迹规划与制导","authors":"Xiaoyong Mao, Baoguo Yu, Yingjing Shi, Rui Li","doi":"10.3934/jimo.2022026","DOIUrl":null,"url":null,"abstract":"Aiming at the energy management problem of unmanned aerial vehicles (UAVs) in the terminal area energy management (TAEM) phase, a real-time online trajectory planning and guidance strategy based on judging energy is proposed. The trajectory planning strategy estimates the flight profile online in real time by judging the energy and changing the radius of the heading alignment circle. In addition, guidance instructions are also obtained at once. In the S-turn stage, the lateral guidance adopts a closed loop control mode with a fixed bank angle. In the remaining stage, the lateral guidance adopts a closed loop control mode for tracking the azimuth angle. In all stages, the longitudinal guidance adopts a closed loop control mode for tracking the flight path angle and flight height. The trajectory planning strategy is able to quickly generate a reference trajectory for testing cases with large variations not only in the initial energy but also in the energy of the flight process. The simulation results show that the proposed trajectory planning and guidance strategy can effectively manage a UAV's energy in the TAEM phase, ensuring that the UAV lands safely.","PeriodicalId":347719,"journal":{"name":"Journal of Industrial & Management Optimization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Real-time online trajectory planning and guidance for terminal area energy management of unmanned aerial vehicle\",\"authors\":\"Xiaoyong Mao, Baoguo Yu, Yingjing Shi, Rui Li\",\"doi\":\"10.3934/jimo.2022026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the energy management problem of unmanned aerial vehicles (UAVs) in the terminal area energy management (TAEM) phase, a real-time online trajectory planning and guidance strategy based on judging energy is proposed. The trajectory planning strategy estimates the flight profile online in real time by judging the energy and changing the radius of the heading alignment circle. In addition, guidance instructions are also obtained at once. In the S-turn stage, the lateral guidance adopts a closed loop control mode with a fixed bank angle. In the remaining stage, the lateral guidance adopts a closed loop control mode for tracking the azimuth angle. In all stages, the longitudinal guidance adopts a closed loop control mode for tracking the flight path angle and flight height. The trajectory planning strategy is able to quickly generate a reference trajectory for testing cases with large variations not only in the initial energy but also in the energy of the flight process. The simulation results show that the proposed trajectory planning and guidance strategy can effectively manage a UAV's energy in the TAEM phase, ensuring that the UAV lands safely.\",\"PeriodicalId\":347719,\"journal\":{\"name\":\"Journal of Industrial & Management Optimization\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial & Management Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/jimo.2022026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial & Management Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jimo.2022026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对无人机在末端区域能量管理阶段的能量管理问题,提出了一种基于能量判断的实时在线轨迹规划与制导策略。该弹道规划策略通过判断能量和改变航向对准圆半径,实时在线估计飞行轮廓线。此外,还可以立即获得指导指令。在s转弯阶段,侧向制导采用固定倾斜角的闭环控制方式。在剩余阶段,侧向制导采用闭环控制方式跟踪方位角。在各个阶段,纵向制导采用闭环控制方式跟踪航迹角和飞行高度。该弹道规划策略能够在初始能量和飞行过程能量变化较大的情况下,快速生成测试用例的参考弹道。仿真结果表明,所提出的弹道规划和制导策略能够有效地管理无人机在TAEM阶段的能量,确保无人机安全着陆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-time online trajectory planning and guidance for terminal area energy management of unmanned aerial vehicle
Aiming at the energy management problem of unmanned aerial vehicles (UAVs) in the terminal area energy management (TAEM) phase, a real-time online trajectory planning and guidance strategy based on judging energy is proposed. The trajectory planning strategy estimates the flight profile online in real time by judging the energy and changing the radius of the heading alignment circle. In addition, guidance instructions are also obtained at once. In the S-turn stage, the lateral guidance adopts a closed loop control mode with a fixed bank angle. In the remaining stage, the lateral guidance adopts a closed loop control mode for tracking the azimuth angle. In all stages, the longitudinal guidance adopts a closed loop control mode for tracking the flight path angle and flight height. The trajectory planning strategy is able to quickly generate a reference trajectory for testing cases with large variations not only in the initial energy but also in the energy of the flight process. The simulation results show that the proposed trajectory planning and guidance strategy can effectively manage a UAV's energy in the TAEM phase, ensuring that the UAV lands safely.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pricing path-dependent options under the Hawkes jump diffusion process Asymptotic analysis of scalarization functions and applications Product line extension with a green added product: Impacts of segmented consumer preference on supply chain improvement and consumer surplus Optimal investment, consumption and life insurance strategies under stochastic differential utility with habit formation Imitative innovation or independent innovation strategic choice of emerging economies in non-cooperative innovation competition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1