中等地磁风暴条件,WAAS警报和真正的GPS定位质量

V. Demyanov, Xinggang Zhang, Xiaochun Lu
{"title":"中等地磁风暴条件,WAAS警报和真正的GPS定位质量","authors":"V. Demyanov, Xinggang Zhang, Xiaochun Lu","doi":"10.30564/JASR.V2I1.343","DOIUrl":null,"url":null,"abstract":"The most significant part of the Wade Area Augmentation System (WAAS) integrity data consists of the User Differential Range Error (UDRE) and the Grid Ionospheric Vertical Error (GIVE). WAAS solutions are not completely appropriate to determine the GIVE term within the entire wade area coverage zone taking in account real irregular structure of the ionosphere. It leads to the larger confidence bounding terms and lower expected positioning availability in comparison to the reality under geomagnetic storm conditions and system outages. Thus a question arises: is the basic WAAS concept appropriate to provide the same efficiency of the integrity monitoring for both “global differential correction (i.e. clock, ephemeris etc)” and “local differential correction (i.e. ionoshrere, troposhpere and multipath)”? The aim of this paper is to compare official WAAS integrity monitoring reports and real positioning quality in US coverage zone (CONUS) and Canada area under geomagnetic storm conditions and system outages. In this research we are interested in comparison between real GPS positioning quality based on one-frequency C/A ranging mode and HAL (VAL) values which correspond to the LP, LPV and LPV200 requirements. Significant mismatch of the information between WAAS integrity data and real positioning quality was unfolded as a result of this comparison under geomagnetic storms and system outages on February, 2011 and June 22, 2015. Based on this result we think that in order to achieve high confidence of WAAS positioning availability alerts real ionospheric measurements within the wide area coverage zone must be involved instead of the WAAS GIVE values. The better way to realize this idea is to combine WAAS solutions to derive “global differential corrections” and LAAS solutions to derive “local differential corrections”.","PeriodicalId":193824,"journal":{"name":"Journal of Atmospheric Science Research","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Moderate geomagnetic storm condition, WAAS Alerts and real GPS positioning quality\",\"authors\":\"V. Demyanov, Xinggang Zhang, Xiaochun Lu\",\"doi\":\"10.30564/JASR.V2I1.343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most significant part of the Wade Area Augmentation System (WAAS) integrity data consists of the User Differential Range Error (UDRE) and the Grid Ionospheric Vertical Error (GIVE). WAAS solutions are not completely appropriate to determine the GIVE term within the entire wade area coverage zone taking in account real irregular structure of the ionosphere. It leads to the larger confidence bounding terms and lower expected positioning availability in comparison to the reality under geomagnetic storm conditions and system outages. Thus a question arises: is the basic WAAS concept appropriate to provide the same efficiency of the integrity monitoring for both “global differential correction (i.e. clock, ephemeris etc)” and “local differential correction (i.e. ionoshrere, troposhpere and multipath)”? The aim of this paper is to compare official WAAS integrity monitoring reports and real positioning quality in US coverage zone (CONUS) and Canada area under geomagnetic storm conditions and system outages. In this research we are interested in comparison between real GPS positioning quality based on one-frequency C/A ranging mode and HAL (VAL) values which correspond to the LP, LPV and LPV200 requirements. Significant mismatch of the information between WAAS integrity data and real positioning quality was unfolded as a result of this comparison under geomagnetic storms and system outages on February, 2011 and June 22, 2015. Based on this result we think that in order to achieve high confidence of WAAS positioning availability alerts real ionospheric measurements within the wide area coverage zone must be involved instead of the WAAS GIVE values. The better way to realize this idea is to combine WAAS solutions to derive “global differential corrections” and LAAS solutions to derive “local differential corrections”.\",\"PeriodicalId\":193824,\"journal\":{\"name\":\"Journal of Atmospheric Science Research\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric Science Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30564/JASR.V2I1.343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30564/JASR.V2I1.343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

Wade区域增强系统(WAAS)完整性数据中最重要的部分是用户差距误差(UDRE)和栅格电离层垂直误差(GIVE)。考虑到电离层的实际不规则结构,WAAS解并不完全适合于确定整个涉水区域覆盖区内的GIVE项。与地磁风暴和系统中断条件下的实际情况相比,它导致了更大的置信边界项和更低的期望定位可用性。因此,出现了一个问题:基本的WAAS概念是否适合为“全球差分校正(即时钟、星历等)”和“局部差分校正(即电离层、对流层和多径)”提供相同的完整性监测效率?本文的目的是比较美国覆盖区(CONUS)和加拿大地区在地磁风暴和系统中断条件下的官方WAAS完整性监测报告和实际定位质量。在本研究中,我们感兴趣的是基于一频C/A测距模式的真实GPS定位质量与对应于LP, LPV和LPV200要求的HAL (VAL)值的比较。在2011年2月和2015年6月22日的地磁风暴和系统中断情况下,WAAS完整性数据与实际定位质量之间的信息存在明显的不匹配。基于这一结果,我们认为为了获得高置信度的WAAS定位可用性警报,必须涉及广域覆盖区内的真实电离层测量,而不是WAAS GIVE值。实现这一思想的更好方法是将WAAS解决方案与LAAS解决方案结合起来,得到“全局微分修正”,得到“局部微分修正”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Moderate geomagnetic storm condition, WAAS Alerts and real GPS positioning quality
The most significant part of the Wade Area Augmentation System (WAAS) integrity data consists of the User Differential Range Error (UDRE) and the Grid Ionospheric Vertical Error (GIVE). WAAS solutions are not completely appropriate to determine the GIVE term within the entire wade area coverage zone taking in account real irregular structure of the ionosphere. It leads to the larger confidence bounding terms and lower expected positioning availability in comparison to the reality under geomagnetic storm conditions and system outages. Thus a question arises: is the basic WAAS concept appropriate to provide the same efficiency of the integrity monitoring for both “global differential correction (i.e. clock, ephemeris etc)” and “local differential correction (i.e. ionoshrere, troposhpere and multipath)”? The aim of this paper is to compare official WAAS integrity monitoring reports and real positioning quality in US coverage zone (CONUS) and Canada area under geomagnetic storm conditions and system outages. In this research we are interested in comparison between real GPS positioning quality based on one-frequency C/A ranging mode and HAL (VAL) values which correspond to the LP, LPV and LPV200 requirements. Significant mismatch of the information between WAAS integrity data and real positioning quality was unfolded as a result of this comparison under geomagnetic storms and system outages on February, 2011 and June 22, 2015. Based on this result we think that in order to achieve high confidence of WAAS positioning availability alerts real ionospheric measurements within the wide area coverage zone must be involved instead of the WAAS GIVE values. The better way to realize this idea is to combine WAAS solutions to derive “global differential corrections” and LAAS solutions to derive “local differential corrections”.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dense Fog in the Netherlands: Composition of the Nuclei that Contribute Most to the Droplet Number Concentration Assessment of the Intertropical Convergence Zone over the Atlantic Ocean through an Algorithm Based on Precipitation Air Pollution Risk Assessment Using GIS and Remotely Sensed Data in Kirkuk City, Iraq Relationship and Variability of Atmospheric Precipitation Characteristics in the North-West of Ukraine Variation of Dynamical Parameters with Upper Tropospheric Potential Vorticity in Tropical Cyclone over the North Indian Ocean Using WRF Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1