运动补偿自动图像合成的GoPro视频

Ryan Lustig, Balu Adsumilli, David Newman
{"title":"运动补偿自动图像合成的GoPro视频","authors":"Ryan Lustig, Balu Adsumilli, David Newman","doi":"10.1145/2945078.2945090","DOIUrl":null,"url":null,"abstract":"Image composition for GoPro videos captured in the presence of significant camera motion is a manual and time consuming process. Existing techniques typically fail to automate this process due to the wide-capture field of view and high camera motion of such videos. The proposed method seeks to solve these problems by developing an image registration algorithm for fisheye images without expensive pixel warping or loss of field of view. Background subtraction is performed to extract moving foreground objects, which are noise corrected and then layered on a reference image to build the final composite. The results show marked improvements in accuracy and efficiency for automating image composition.","PeriodicalId":417667,"journal":{"name":"ACM SIGGRAPH 2016 Posters","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motion compensated automatic image compositing for GoPro videos\",\"authors\":\"Ryan Lustig, Balu Adsumilli, David Newman\",\"doi\":\"10.1145/2945078.2945090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image composition for GoPro videos captured in the presence of significant camera motion is a manual and time consuming process. Existing techniques typically fail to automate this process due to the wide-capture field of view and high camera motion of such videos. The proposed method seeks to solve these problems by developing an image registration algorithm for fisheye images without expensive pixel warping or loss of field of view. Background subtraction is performed to extract moving foreground objects, which are noise corrected and then layered on a reference image to build the final composite. The results show marked improvements in accuracy and efficiency for automating image composition.\",\"PeriodicalId\":417667,\"journal\":{\"name\":\"ACM SIGGRAPH 2016 Posters\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2016 Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2945078.2945090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2016 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2945078.2945090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在存在显著相机运动的情况下拍摄GoPro视频的图像构图是一个手动且耗时的过程。现有的技术通常无法实现这一过程的自动化,因为这类视频的捕获范围很广,摄像机的运动也很高。该方法旨在通过开发一种无昂贵的像素扭曲或视场损失的鱼眼图像配准算法来解决这些问题。进行背景减法以提取移动的前景物体,然后对其进行噪声校正,然后在参考图像上分层以构建最终的复合图像。结果表明,自动合成图像的精度和效率有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Motion compensated automatic image compositing for GoPro videos
Image composition for GoPro videos captured in the presence of significant camera motion is a manual and time consuming process. Existing techniques typically fail to automate this process due to the wide-capture field of view and high camera motion of such videos. The proposed method seeks to solve these problems by developing an image registration algorithm for fisheye images without expensive pixel warping or loss of field of view. Background subtraction is performed to extract moving foreground objects, which are noise corrected and then layered on a reference image to build the final composite. The results show marked improvements in accuracy and efficiency for automating image composition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A method for realistic 3D projection mapping using multiple projectors Straightening walking path using redirected walking technique Automatic generation of 3D typography Physics-aided editing of simulation-ready muscles for visual effects Multimodal augmentation of surfaces using conductive 3D printing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1