人工神经网络算法在大规模并行硬件上的有效映射:REMAP编程环境

Guang Li, B. Svensson
{"title":"人工神经网络算法在大规模并行硬件上的有效映射:REMAP编程环境","authors":"Guang Li, B. Svensson","doi":"10.1109/ICAPP.1995.472292","DOIUrl":null,"url":null,"abstract":"The application of artificial neural networks (ANN) in real-time embedded systems demands high performance computers. Miniaturized massively parallel architectures are suitable computation platforms for this task. An important question which arises is how to establish an effective mapping from ANN algorithms to hardware. In this paper, we demonstrate how an effective mapping can be achieved with our programming environment in close combination with an optimized architecture design targeted for neuro-computing.<<ETX>>","PeriodicalId":448130,"journal":{"name":"Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective mapping of artificial neural network algorithms onto massively parallel hardware: the REMAP programming environment\",\"authors\":\"Guang Li, B. Svensson\",\"doi\":\"10.1109/ICAPP.1995.472292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of artificial neural networks (ANN) in real-time embedded systems demands high performance computers. Miniaturized massively parallel architectures are suitable computation platforms for this task. An important question which arises is how to establish an effective mapping from ANN algorithms to hardware. In this paper, we demonstrate how an effective mapping can be achieved with our programming environment in close combination with an optimized architecture design targeted for neuro-computing.<<ETX>>\",\"PeriodicalId\":448130,\"journal\":{\"name\":\"Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAPP.1995.472292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPP.1995.472292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工神经网络在实时嵌入式系统中的应用需要高性能的计算机。小型化的大规模并行架构是解决这一问题的理想计算平台。一个重要的问题是如何建立从人工神经网络算法到硬件的有效映射。在本文中,我们演示了如何将我们的编程环境与针对神经计算的优化架构设计紧密结合,实现有效的映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effective mapping of artificial neural network algorithms onto massively parallel hardware: the REMAP programming environment
The application of artificial neural networks (ANN) in real-time embedded systems demands high performance computers. Miniaturized massively parallel architectures are suitable computation platforms for this task. An important question which arises is how to establish an effective mapping from ANN algorithms to hardware. In this paper, we demonstrate how an effective mapping can be achieved with our programming environment in close combination with an optimized architecture design targeted for neuro-computing.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approximation algorithms for time constrained scheduling A general definition of deadlocks for distributed systems Vectoring the N-body problem on the CM-5 On deflection worm routing on meshes Variable tracking technique: a single-pass method to determine data dependence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1