DeconvOptim。jl -信号反卷积与朱莉娅

Felix Wechsler, Rainer Heintzmann
{"title":"DeconvOptim。jl -信号反卷积与朱莉娅","authors":"Felix Wechsler, Rainer Heintzmann","doi":"10.21105/jcon.00099","DOIUrl":null,"url":null,"abstract":"Deconvolution is a versatile method to enhance the quality of signals measured with systems which can be expressed mathematically as a convolution of a system’s response function with a signal. In this paper, we present DeconvOptim.jl , a flexible toolbox written in Julia to deconvolve one or multiple multi-dimensional signals which have been degraded by a multi-dimensional signal response function. DeconvOptim.jl works both on CPUs and GPUs and utilizes recent advancements in Julias automatic differentiation ecosystem. In this work we demonstrate that DeconvOptim.jl surpasses the performance of existing open source libraries clearly and is applicable to one dimensional time series datasets but also to multi-dimensional microscopical imaging datasets.","PeriodicalId":443465,"journal":{"name":"JuliaCon Proceedings","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DeconvOptim.jl - Signal Deconvolution with Julia\",\"authors\":\"Felix Wechsler, Rainer Heintzmann\",\"doi\":\"10.21105/jcon.00099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deconvolution is a versatile method to enhance the quality of signals measured with systems which can be expressed mathematically as a convolution of a system’s response function with a signal. In this paper, we present DeconvOptim.jl , a flexible toolbox written in Julia to deconvolve one or multiple multi-dimensional signals which have been degraded by a multi-dimensional signal response function. DeconvOptim.jl works both on CPUs and GPUs and utilizes recent advancements in Julias automatic differentiation ecosystem. In this work we demonstrate that DeconvOptim.jl surpasses the performance of existing open source libraries clearly and is applicable to one dimensional time series datasets but also to multi-dimensional microscopical imaging datasets.\",\"PeriodicalId\":443465,\"journal\":{\"name\":\"JuliaCon Proceedings\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JuliaCon Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21105/jcon.00099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JuliaCon Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21105/jcon.00099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

反卷积是一种提高系统测量信号质量的通用方法,它可以用数学形式表示为系统响应函数与信号的卷积。在本文中,我们提出了DeconvOptim。jl,一个用Julia编写的灵活工具箱,用于对一个或多个被多维信号响应函数降级的多维信号进行反卷积。DeconvOptim。jl可在cpu和gpu上工作,并利用Julias自动差异化生态系统的最新进展。在这项工作中,我们证明了DeconvOptim。Jl的性能明显优于现有开源库,不仅适用于一维时间序列数据集,也适用于多维显微成像数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeconvOptim.jl - Signal Deconvolution with Julia
Deconvolution is a versatile method to enhance the quality of signals measured with systems which can be expressed mathematically as a convolution of a system’s response function with a signal. In this paper, we present DeconvOptim.jl , a flexible toolbox written in Julia to deconvolve one or multiple multi-dimensional signals which have been degraded by a multi-dimensional signal response function. DeconvOptim.jl works both on CPUs and GPUs and utilizes recent advancements in Julias automatic differentiation ecosystem. In this work we demonstrate that DeconvOptim.jl surpasses the performance of existing open source libraries clearly and is applicable to one dimensional time series datasets but also to multi-dimensional microscopical imaging datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MutableArithmetics: An API for mutable operations Extending JumpProcesses.jl for fast point process simulation with time-varying intensities RangeEnclosures.jl: A framework to bound function ranges DeconvOptim.jl - Signal Deconvolution with Julia Computing Reachable Sets of Semi-Discrete Solid Dynamics Equations with ReachabilityAnalysis.jl
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1