基于k -手段,确定班古鲁摄政中婴儿和幼儿的健康状况

Daniel Tunggono Saputro, Wida Pesah Sucihermayanti
{"title":"基于k -手段,确定班古鲁摄政中婴儿和幼儿的健康状况","authors":"Daniel Tunggono Saputro, Wida Pesah Sucihermayanti","doi":"10.24002/jbi.v12i2.4861","DOIUrl":null,"url":null,"abstract":"Abstract. The health level in Indonesia is still a challenge in every central and district area, especially the health level of infants and toddlers. The Health Office in North Bengkulu Regency always strives to provide the best health services to the people in North Bengkulu. Focusing on the health level of infants and toddlers in Bengkulu Regency, this study applies clustering to help the Health Office determining their health level in each village/district. K-means algorithm is used to cluster each subdistrict based on indicators of infant mortality, under-five mortality, morbidity, and nutritional status. The result showed that the processing of existing indicators is grouped into three clusters covering high, medium and low health levels.Keywords: Clustering, K-means, Health, RapidMiner Abstrak. Tingkat kesehatan di Indonesia masih menjadi tantangan di setiap daerah pusat maupun kabupaten, terutama tingkat kesehatan pada bayi dan balita. Dinas Kesehatan di Kabupaten Bengkulu Utara selalu berusaha untuk memberikan pelayanan kesehatan terbaik terhadap masyarakat di Bengkulu Utara. Dalam rangka memperhatikan tingkat kesehatan bayi dan balita pada Kabuaten Bengkulu, penelitian ini menerapkan klasterisasi untuk membantu Dinas Kesehatan mengetahui tingkat kesehatan bayi dan balita disetiap desa/ kecamatan. Algoritma K-means digunakan untuk mengklasterisasisetiap kecamatan berdasarkan indikator angka kematian bayi, angka kematian balita, angka kesakitan , dan status gizi. Hasil proses pengolahan indikator yang ada dikelompokan ialah tiga klaster meliputi tingkat kesehatan tinggi, sedang dan rendah. Kata Kunci: Klasterisasi, K-means, Kesehatan, RapidMiner","PeriodicalId":381749,"journal":{"name":"Jurnal Buana Informatika","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Penerapan Klasterisasi Menggunakan K-Means untuk Menentukan Tingkat Kesehatan Bayi dan Balita di Kabupaten Bengkulu Utara\",\"authors\":\"Daniel Tunggono Saputro, Wida Pesah Sucihermayanti\",\"doi\":\"10.24002/jbi.v12i2.4861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The health level in Indonesia is still a challenge in every central and district area, especially the health level of infants and toddlers. The Health Office in North Bengkulu Regency always strives to provide the best health services to the people in North Bengkulu. Focusing on the health level of infants and toddlers in Bengkulu Regency, this study applies clustering to help the Health Office determining their health level in each village/district. K-means algorithm is used to cluster each subdistrict based on indicators of infant mortality, under-five mortality, morbidity, and nutritional status. The result showed that the processing of existing indicators is grouped into three clusters covering high, medium and low health levels.Keywords: Clustering, K-means, Health, RapidMiner Abstrak. Tingkat kesehatan di Indonesia masih menjadi tantangan di setiap daerah pusat maupun kabupaten, terutama tingkat kesehatan pada bayi dan balita. Dinas Kesehatan di Kabupaten Bengkulu Utara selalu berusaha untuk memberikan pelayanan kesehatan terbaik terhadap masyarakat di Bengkulu Utara. Dalam rangka memperhatikan tingkat kesehatan bayi dan balita pada Kabuaten Bengkulu, penelitian ini menerapkan klasterisasi untuk membantu Dinas Kesehatan mengetahui tingkat kesehatan bayi dan balita disetiap desa/ kecamatan. Algoritma K-means digunakan untuk mengklasterisasisetiap kecamatan berdasarkan indikator angka kematian bayi, angka kematian balita, angka kesakitan , dan status gizi. Hasil proses pengolahan indikator yang ada dikelompokan ialah tiga klaster meliputi tingkat kesehatan tinggi, sedang dan rendah. Kata Kunci: Klasterisasi, K-means, Kesehatan, RapidMiner\",\"PeriodicalId\":381749,\"journal\":{\"name\":\"Jurnal Buana Informatika\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Buana Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24002/jbi.v12i2.4861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Buana Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24002/jbi.v12i2.4861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

摘要在印度尼西亚,每个中部和地区的卫生水平仍然是一个挑战,特别是婴幼儿的卫生水平。北Bengkulu县卫生局一直努力向北Bengkulu的人民提供最好的保健服务。本研究以明库卢县婴幼儿的健康水平为重点,采用聚类方法帮助卫生局确定每个村/区婴幼儿的健康水平。根据婴儿死亡率、五岁以下儿童死亡率、发病率和营养状况等指标,采用K-means算法对各街道进行聚类。结果表明,现有指标的处理分为三类,涵盖高、中、低健康水平。关键词:聚类,K-means, Health, RapidMinerTingkat kesehatan di Indonesia masih menjadi tantangan di setiap daerah pusat maupun kabupaten, terutama Tingkat kesehatan pada bayi dan balita。国会议员:国会议员:国会议员:国会议员:国会议员:国会议员:国会议员:国会议员。Dalam rangka成员perhatikan tingkat kesehatan bayi dan balita pada Kabuaten Bengkulu, penelitian ini menerapkan klasterisasi untuk membantu Dinas kesehatan mengetahui tingkat kesehatan bayi dan balita disetiap desa/ kecamatan。算法K-means digunakan untuk mengklasterisasisetiap kecamatan berdasarkan指标angka kematian bayi, angka kematian balita, angka kesakitan, dan status gizi。Hasil提出了pengolahan指标yang ada dikelompokan,以及tiga klaster meliputi tingkat kesehatan tinggi, sedang dan rendah。Kata Kunci: Klasterisasi, K-means, Kesehatan, RapidMiner
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Penerapan Klasterisasi Menggunakan K-Means untuk Menentukan Tingkat Kesehatan Bayi dan Balita di Kabupaten Bengkulu Utara
Abstract. The health level in Indonesia is still a challenge in every central and district area, especially the health level of infants and toddlers. The Health Office in North Bengkulu Regency always strives to provide the best health services to the people in North Bengkulu. Focusing on the health level of infants and toddlers in Bengkulu Regency, this study applies clustering to help the Health Office determining their health level in each village/district. K-means algorithm is used to cluster each subdistrict based on indicators of infant mortality, under-five mortality, morbidity, and nutritional status. The result showed that the processing of existing indicators is grouped into three clusters covering high, medium and low health levels.Keywords: Clustering, K-means, Health, RapidMiner Abstrak. Tingkat kesehatan di Indonesia masih menjadi tantangan di setiap daerah pusat maupun kabupaten, terutama tingkat kesehatan pada bayi dan balita. Dinas Kesehatan di Kabupaten Bengkulu Utara selalu berusaha untuk memberikan pelayanan kesehatan terbaik terhadap masyarakat di Bengkulu Utara. Dalam rangka memperhatikan tingkat kesehatan bayi dan balita pada Kabuaten Bengkulu, penelitian ini menerapkan klasterisasi untuk membantu Dinas Kesehatan mengetahui tingkat kesehatan bayi dan balita disetiap desa/ kecamatan. Algoritma K-means digunakan untuk mengklasterisasisetiap kecamatan berdasarkan indikator angka kematian bayi, angka kematian balita, angka kesakitan , dan status gizi. Hasil proses pengolahan indikator yang ada dikelompokan ialah tiga klaster meliputi tingkat kesehatan tinggi, sedang dan rendah. Kata Kunci: Klasterisasi, K-means, Kesehatan, RapidMiner
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blackbox Testing on Virtual Reality Gamelan Saron Using Equivalence Partition Method Implementasi Perbaikan Kualitas Citra Tanaman terhadap Perbedaan Kamera untuk Prediksi Pigmen Fotosintesis berbasis Machine Learning Comparative Analysis of Sound Response from Simple and Fuzzy Algorithm in Saron Virtual Reality Klasterisasi Puskesmas dengan K-Means Berdasarkan Data Kualitas Kesehatan Keluarga dan Gizi Masyarakat Analisis Sentimen Ulasan Aplikasi Jamsostek Mobile Menggunakan Metode Support Vector Machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1