氧化石墨烯对纳米复合材料光催化活性的影响

*А. Zh. Zhumabekov1
{"title":"氧化石墨烯对纳米复合材料光催化活性的影响","authors":"*А. Zh. Zhumabekov1","doi":"10.48081/uxbi7290","DOIUrl":null,"url":null,"abstract":"\"In this paper, is investigated the photocatalytic activity of a nanocomposite material based on titanium and graphene oxides. The sample was obtained by hydrothermal synthesis. The photoactalytic activity of nanocomposites was studied by the transient responce of the photoinduced current. Charge transfer resistances were also investigated using electrochemical impedance spectroscopy. Identification of nanocomposite materials was carried out using Raman and FTIR spectroscopy. This combination shows that there is a connection between the original components. Raman spectroscopy shows that the peaks obtained are characteristic of both titanium dioxide and graphene oxide. At the same time, the ID/IG ratio shows the reduction of graphene oxide during hydrothermal synthesis. And FTIR spectroscopy shows that there is a Ti-O-C bond below the 1000 cm-1 mode. The absorption ability also affects the increase in the photocurrent of the nanocomposite material. Absorption spectra show a shift to the long-wavelength region of light due to the transparency of graphene oxide in the visible region. The concentration of graphene oxide plays an important role in increasing the efficiency of the nanocomposite material. In this work, the concentration of the graphene oxide is equal to 7 wt% with respect to titanium dioxide. Keywords: nanocomposite material, titanium dioxide, graphene oxide, hydrothermal synthesis, photocatalytic activity.\"","PeriodicalId":204660,"journal":{"name":"Bulletin of Toraighyrov University. Physics & Mathematics series","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\"The influence of graphene oxide on the photocatalytic activity of nanocomposite material\\\"\",\"authors\":\"*А. Zh. Zhumabekov1\",\"doi\":\"10.48081/uxbi7290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"In this paper, is investigated the photocatalytic activity of a nanocomposite material based on titanium and graphene oxides. The sample was obtained by hydrothermal synthesis. The photoactalytic activity of nanocomposites was studied by the transient responce of the photoinduced current. Charge transfer resistances were also investigated using electrochemical impedance spectroscopy. Identification of nanocomposite materials was carried out using Raman and FTIR spectroscopy. This combination shows that there is a connection between the original components. Raman spectroscopy shows that the peaks obtained are characteristic of both titanium dioxide and graphene oxide. At the same time, the ID/IG ratio shows the reduction of graphene oxide during hydrothermal synthesis. And FTIR spectroscopy shows that there is a Ti-O-C bond below the 1000 cm-1 mode. The absorption ability also affects the increase in the photocurrent of the nanocomposite material. Absorption spectra show a shift to the long-wavelength region of light due to the transparency of graphene oxide in the visible region. The concentration of graphene oxide plays an important role in increasing the efficiency of the nanocomposite material. In this work, the concentration of the graphene oxide is equal to 7 wt% with respect to titanium dioxide. Keywords: nanocomposite material, titanium dioxide, graphene oxide, hydrothermal synthesis, photocatalytic activity.\\\"\",\"PeriodicalId\":204660,\"journal\":{\"name\":\"Bulletin of Toraighyrov University. Physics & Mathematics series\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Toraighyrov University. Physics & Mathematics series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48081/uxbi7290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Toraighyrov University. Physics & Mathematics series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48081/uxbi7290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,研究了基于钛和石墨烯氧化物的纳米复合材料的光催化活性。样品采用水热法合成。利用光敏电流的瞬态响应研究了纳米复合材料的光催化活性。用电化学阻抗谱法研究了电荷转移电阻。利用拉曼光谱和傅里叶红外光谱对纳米复合材料进行了鉴定。这种组合表明原始组件之间存在联系。拉曼光谱分析表明,所获得的峰具有二氧化钛和氧化石墨烯的特征。同时,在水热合成过程中,氧化石墨烯的ID/IG比值显示出氧化石墨烯的还原。FTIR光谱显示在1000 cm-1模式下存在Ti-O-C键。吸收能力对纳米复合材料光电流的增加也有影响。由于氧化石墨烯在可见光区的透明度,吸收光谱显示出向长波长光区域的偏移。氧化石墨烯的浓度对提高纳米复合材料的效率起着重要的作用。在这项工作中,氧化石墨烯的浓度等于二氧化钛的7 wt%。关键词:纳米复合材料,二氧化钛,氧化石墨烯,水热合成,光催化活性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
"The influence of graphene oxide on the photocatalytic activity of nanocomposite material"
"In this paper, is investigated the photocatalytic activity of a nanocomposite material based on titanium and graphene oxides. The sample was obtained by hydrothermal synthesis. The photoactalytic activity of nanocomposites was studied by the transient responce of the photoinduced current. Charge transfer resistances were also investigated using electrochemical impedance spectroscopy. Identification of nanocomposite materials was carried out using Raman and FTIR spectroscopy. This combination shows that there is a connection between the original components. Raman spectroscopy shows that the peaks obtained are characteristic of both titanium dioxide and graphene oxide. At the same time, the ID/IG ratio shows the reduction of graphene oxide during hydrothermal synthesis. And FTIR spectroscopy shows that there is a Ti-O-C bond below the 1000 cm-1 mode. The absorption ability also affects the increase in the photocurrent of the nanocomposite material. Absorption spectra show a shift to the long-wavelength region of light due to the transparency of graphene oxide in the visible region. The concentration of graphene oxide plays an important role in increasing the efficiency of the nanocomposite material. In this work, the concentration of the graphene oxide is equal to 7 wt% with respect to titanium dioxide. Keywords: nanocomposite material, titanium dioxide, graphene oxide, hydrothermal synthesis, photocatalytic activity."
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ЦИФРЛЫҚ САЙЛАУ ЖҮЙЕСІ МӘСЕЛЕСІНІҢ ҚАҒИДАЛАРЫН ТАЛДАУ: ШЕТЕЛДІК ТӘЖІРИБЕ "ДЕРЕКТЕРДІ ТАЛДАУДЫҢ СИПАТТАМАЛЫҚ СТАТИСТИКА ӘДІСІ МЕН МОДЕЛІ" "The influence of graphene oxide on the photocatalytic activity of nanocomposite material" Туындыға қатысты шешілмеген сызықтық емес интегралды – дифференциалдық теңдеулердің голоморфты шешімдері РАЗРАБОТКА МЕТОДИЧЕСКОГО ИНСТРУМЕНТАРИЯ УРОКОВ ПО ФИЗИКЕ С ПРИМЕНЕНИЕМ АКТИВНОГО ДИДАКТИЧЕСКОГО КОНТЕНТА
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1