Parsytec GCel 3/512计算机视觉算法

P. Nastou, K. Kyrimis, D. Maritsas
{"title":"Parsytec GCel 3/512计算机视觉算法","authors":"P. Nastou, K. Kyrimis, D. Maritsas","doi":"10.1109/ICAPP.1995.472209","DOIUrl":null,"url":null,"abstract":"This paper describes the implementation of a library of low-level image processing algorithms. This library is divided into two families of algorithms, one for those that apply to the spatial domain (local histogram equalization, local average filter, median filter, Sobel edge detector, and histogram evaluation), and one for those that apply to the frequency domain (forward and inverse discrete Fourier Transform, amplitude of the forward discrete Fourier transform, forward and inverse discrete cosine transform, and Butterworth filters). The efficiency of these algorithms depends on the number of processors used, the method of combining results produced by different processors (e.g., sequentially or using a binary tree), and the time required for the combination of two independently produced results compared to the time required to produce them.<<ETX>>","PeriodicalId":448130,"journal":{"name":"Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computer vision algorithms on the Parsytec GCel 3/512\",\"authors\":\"P. Nastou, K. Kyrimis, D. Maritsas\",\"doi\":\"10.1109/ICAPP.1995.472209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the implementation of a library of low-level image processing algorithms. This library is divided into two families of algorithms, one for those that apply to the spatial domain (local histogram equalization, local average filter, median filter, Sobel edge detector, and histogram evaluation), and one for those that apply to the frequency domain (forward and inverse discrete Fourier Transform, amplitude of the forward discrete Fourier transform, forward and inverse discrete cosine transform, and Butterworth filters). The efficiency of these algorithms depends on the number of processors used, the method of combining results produced by different processors (e.g., sequentially or using a binary tree), and the time required for the combination of two independently produced results compared to the time required to produce them.<<ETX>>\",\"PeriodicalId\":448130,\"journal\":{\"name\":\"Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing\",\"volume\":\"155 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAPP.1995.472209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPP.1995.472209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文描述了一个底层图像处理算法库的实现。该库分为两类算法,一类适用于空间域(局部直方图均衡、局部平均滤波器、中值滤波器、索贝尔边缘检测器和直方图评估),另一类适用于频域(正向和逆离散傅立叶变换、正向离散傅立叶变换的振幅、正向和逆离散余弦变换和巴特沃斯滤波器)。这些算法的效率取决于所使用的处理器的数量,组合不同处理器产生的结果的方法(例如,顺序或使用二叉树),以及组合两个独立产生的结果所需的时间与产生它们所需的时间的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computer vision algorithms on the Parsytec GCel 3/512
This paper describes the implementation of a library of low-level image processing algorithms. This library is divided into two families of algorithms, one for those that apply to the spatial domain (local histogram equalization, local average filter, median filter, Sobel edge detector, and histogram evaluation), and one for those that apply to the frequency domain (forward and inverse discrete Fourier Transform, amplitude of the forward discrete Fourier transform, forward and inverse discrete cosine transform, and Butterworth filters). The efficiency of these algorithms depends on the number of processors used, the method of combining results produced by different processors (e.g., sequentially or using a binary tree), and the time required for the combination of two independently produced results compared to the time required to produce them.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approximation algorithms for time constrained scheduling A general definition of deadlocks for distributed systems Vectoring the N-body problem on the CM-5 On deflection worm routing on meshes Variable tracking technique: a single-pass method to determine data dependence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1