孤立的手写阿拉伯字符的识别

Osamah Abdulrahman Almansari, N. Hashim
{"title":"孤立的手写阿拉伯字符的识别","authors":"Osamah Abdulrahman Almansari, N. Hashim","doi":"10.1109/ICOM47790.2019.8952035","DOIUrl":null,"url":null,"abstract":"The challenges that face the handwritten Arabic recognition are overwhelming such as different varieties of handwriting and few public databases available. Also, teaching the non-Arabic speaker at the young age is very difficult due to the unfamiliarity of the words and meanings. So, this project is focused on building a model of a deep learning architecture with convolutional neural network (CNN) and multilayer perceptron (MLP) neural network by using python programming language. This project analyzes the performance of a public database which is Arabic Handwritten Characters Dataset (AHCD). However, training this database with CNN model has achieved a test accuracy of 95.27% while training it with MLP model achieved 72.08%. Therefore, the CNN model is suitable to be used in the application device.","PeriodicalId":415914,"journal":{"name":"2019 7th International Conference on Mechatronics Engineering (ICOM)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Recognition of Isolated Handwritten Arabic Characters\",\"authors\":\"Osamah Abdulrahman Almansari, N. Hashim\",\"doi\":\"10.1109/ICOM47790.2019.8952035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The challenges that face the handwritten Arabic recognition are overwhelming such as different varieties of handwriting and few public databases available. Also, teaching the non-Arabic speaker at the young age is very difficult due to the unfamiliarity of the words and meanings. So, this project is focused on building a model of a deep learning architecture with convolutional neural network (CNN) and multilayer perceptron (MLP) neural network by using python programming language. This project analyzes the performance of a public database which is Arabic Handwritten Characters Dataset (AHCD). However, training this database with CNN model has achieved a test accuracy of 95.27% while training it with MLP model achieved 72.08%. Therefore, the CNN model is suitable to be used in the application device.\",\"PeriodicalId\":415914,\"journal\":{\"name\":\"2019 7th International Conference on Mechatronics Engineering (ICOM)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 7th International Conference on Mechatronics Engineering (ICOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOM47790.2019.8952035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Conference on Mechatronics Engineering (ICOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOM47790.2019.8952035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

手写阿拉伯文识别面临的挑战是压倒性的,如不同种类的手写和很少的公共数据库可用。此外,由于对单词和含义的不熟悉,在年轻时教非阿拉伯语使用者是非常困难的。因此,本项目主要利用python编程语言构建卷积神经网络(CNN)和多层感知器(MLP)神经网络的深度学习架构模型。本项目分析了一个公共数据库的性能,该数据库是阿拉伯手写字符数据集(AHCD)。然而,用CNN模型训练该数据库的测试准确率为95.27%,用MLP模型训练该数据库的测试准确率为72.08%。因此,CNN模型适合在应用设备中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recognition of Isolated Handwritten Arabic Characters
The challenges that face the handwritten Arabic recognition are overwhelming such as different varieties of handwriting and few public databases available. Also, teaching the non-Arabic speaker at the young age is very difficult due to the unfamiliarity of the words and meanings. So, this project is focused on building a model of a deep learning architecture with convolutional neural network (CNN) and multilayer perceptron (MLP) neural network by using python programming language. This project analyzes the performance of a public database which is Arabic Handwritten Characters Dataset (AHCD). However, training this database with CNN model has achieved a test accuracy of 95.27% while training it with MLP model achieved 72.08%. Therefore, the CNN model is suitable to be used in the application device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classifying Motion Intention from EMG signal: A k-NN Approach Assumptions of Lateral Acceleration Behavior Limits for Prediction Tasks in Autonomous Vehicles Development and Performance Evaluation of Modular RC-based Power Supply for Micro-EDM A Comparative Study of PD, LQR and MPC on Quadrotor Using Quaternion Approach Fetal Biometry Assessment of Femur Length for Pregnant Women in Dammam, Saudi Arabia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1