基于L_1/2范数正则化的稀疏最小学习机

M. L. D. Dias, A. Freire, A. H. S. Júnior, A. Neto, J. Gomes
{"title":"基于L_1/2范数正则化的稀疏最小学习机","authors":"M. L. D. Dias, A. Freire, A. H. S. Júnior, A. Neto, J. Gomes","doi":"10.1109/BRACIS.2018.00043","DOIUrl":null,"url":null,"abstract":"The Minimal Learning Machine (MLM) is a supervised method in which learning consists of fitting a multiresponse linear regression model between distances computed from the input and output spaces. A critical issue related to the training process in MLMs is the selection of prototypes, also called reference points (RPs), from which distances are taken. In its original formulation, the MLM selects the RPs randomly from the data. In this paper we empirically show that the original random selection may lead to a poor generalization capability. In addition, we propose a novel pruning method for selecting RPs based on L_1/2 norm regularization. Our results show that the proposed method is able to outperform the original MLM and its variants.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse Minimal Learning Machines Via L_1/2 Norm Regularization\",\"authors\":\"M. L. D. Dias, A. Freire, A. H. S. Júnior, A. Neto, J. Gomes\",\"doi\":\"10.1109/BRACIS.2018.00043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Minimal Learning Machine (MLM) is a supervised method in which learning consists of fitting a multiresponse linear regression model between distances computed from the input and output spaces. A critical issue related to the training process in MLMs is the selection of prototypes, also called reference points (RPs), from which distances are taken. In its original formulation, the MLM selects the RPs randomly from the data. In this paper we empirically show that the original random selection may lead to a poor generalization capability. In addition, we propose a novel pruning method for selecting RPs based on L_1/2 norm regularization. Our results show that the proposed method is able to outperform the original MLM and its variants.\",\"PeriodicalId\":405190,\"journal\":{\"name\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRACIS.2018.00043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2018.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最小学习机(MLM)是一种监督学习方法,其学习包括拟合从输入和输出空间计算的距离之间的多响应线性回归模型。与传销训练过程相关的一个关键问题是原型的选择,也称为参考点(rp),从中获取距离。在其原始公式中,传销从数据中随机选择rp。在本文中,我们的经验表明,原始的随机选择可能导致较差的泛化能力。此外,我们提出了一种基于L_1/2范数正则化的rp剪枝方法。结果表明,本文提出的方法优于原始传销及其变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparse Minimal Learning Machines Via L_1/2 Norm Regularization
The Minimal Learning Machine (MLM) is a supervised method in which learning consists of fitting a multiresponse linear regression model between distances computed from the input and output spaces. A critical issue related to the training process in MLMs is the selection of prototypes, also called reference points (RPs), from which distances are taken. In its original formulation, the MLM selects the RPs randomly from the data. In this paper we empirically show that the original random selection may lead to a poor generalization capability. In addition, we propose a novel pruning method for selecting RPs based on L_1/2 norm regularization. Our results show that the proposed method is able to outperform the original MLM and its variants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Data Using Extended Association Rule Network SPt: A Text Mining Process to Extract Relevant Areas from SW Documents to Exploratory Tests Gene Essentiality Prediction Using Topological Features From Metabolic Networks Bio-Inspired and Heuristic Methods Applied to a Benchmark of the Task Scheduling Problem A New Genetic Algorithm-Based Pruning Approach for Optimum-Path Forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1